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1. The Classical Job Shop Scheduling Problem
1.1. Introduction

• The classical job shop scheduling problem
– A fundamental optimization problem in operations research

– NP-hard and one of the most computationally stubborn combinatorial problem 
(Applegate and Cook, 1991)

– Addressed by numerous researchers, and a large body of knowledge accumulated 
over the last 60 years

• Given
– A set M of machines

(sometimes called resources)

– A set I of operations                                    
(sometimes called activities)

– A set J of jobs and  

– A job J  J is an ordered set of operations J = (J1,J2,…J|J|), 
Ji  I for i {1,…|J|},  specifying a processing sequence

• (Note: J is a partition of I, i.e. each operation is in exactly one job)

– Each operation i  I executed on one machine mi during pi time units
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M={m1,m2,m3}

I={1,2,3,4,5,6,7,8,9,10}

K=(1,2,3)  L=(4,5)  N=(6,7)  O=(8,9,10)

J ={K,L,N,O}

1. The Classical Job Shop Scheduling Problem 1.1. Introduction



1. The Classical Job Shop Scheduling Problem 1.1. Introduction

• Data of the example:

• Find: A feasible schedule, i.e. a starting time of each operation:

– Respect the processing sequences within the jobs

– Each machine is used at most by one operation at any time  (“unit capacity”)

– No preemption (no interruption) of the processing of an operation

• A visual representation of a schedule

• Objective: minimize the makespan (i.e., total duration)
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1. The Classical Job Shop Scheduling Problem 1.1. Introduction

A Problem Formulation

• Many different mathematical formulations exist

– A main characteristic: continuous-time / discrete-time (time-indexed)

• Some references

– Ku, Wen-Yang, and J. Christopher Beck. Mixed integer programming models 

for job shop scheduling: A computational analysis. Computers & Operations 

Research 73 (2016): 165-173

– Brucker, P., & Knust, S. (2011). Complex Scheduling. Springer

• A continuous-time formulation

– Based on: Manne, A. (1960). On the job-shop scheduling problem. Operations 

Research, 8(2), 219–223

– Introduce fictive end operation 

– Call two operation i and j consecutive if j follows i in some job

– For each machine m  M, let Im be the set of operations executed on m

– For each operation i  I  {} , i denotes the (variable) starting time

Seminar @ GERAD, Oct 27, 2016 6

“Introduction to Constraint Programming”

30 Oct - 1 Nov, Université Concordia



1. The Classical Job Shop Scheduling Problem 1.1. Introduction

• A continuous-time formulation

– Based on: Manne, A. (1960). On the job-shop scheduling problem. Operations 

Research, 8(2), 219–223

– Introduce fictive end operation 

– Call two operation i and j consecutive in a job if j follows i in some job

– For each machine m  M, let Im be the set of operations executed on m

– For each operation i  I  {}, i denotes the (variable) starting time
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1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

1.2. A Combinatorial Formulation in a Disjunctive Graph

• Constraints have all the same 

structure:w – v  dvw

Precedence Constraints

• Simplify the formulation by 

introducing a disjunctive graph 
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1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

Seminar @ GERAD, Oct 27, 2016 9

v1

v2

v3




v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d)



1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

Selections

• Capturing solutions: 
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Definition

A selection: any set S  E of disjunctive arcs
A selection S is complete if S  {e,ē}   for all {e,ē}  E

A selection S is positive acyclic if the graph G(S)=(V,AS,d) has no 

cycle of positive length and positive cyclic otherwise.
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1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

Timing Problem: Determine Starting Times

• For any selection S, we have 
the following timing problem at hand:

– A potential problem!

• This is a (special) LP with the following dual:

• Well-known and easy to see: 
feasible times exist if and only if S
is positive acyclic

• Hence, selection S called feasible if S is 
complete and positive acyclic
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1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

• For any feasible selection S, an optimal solution can be found by

– Computing the earliest time schedule (S) where 

– For all vV, v(S): length of a longest path from  to node v in G(S) 

– Can be done by topological sorting algorithm, time complexity: O(n+m)

• Timing problem efficiently solvable!
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1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

A Combinatorial Problem Formulation

Seminar @ GERAD, Oct 27, 2016 13

Among all feasible selections, find a selection S minimizing 

the length of a longest path from  to  in G(S). 

v1

v2

v3




v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d)



1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

1.3. Applications in Practice
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1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Liebherr: construction machines, factory in Telfs, Austria
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Source: https://www.youtube.com/watch?v=V-37jTfLe8o



1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Flexible Manufacturing Systems and Robotic Cells
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A robotic cell:
Source: http://www.canadianmetalworking.com/features/where-are-your-

robots/

Flexible manufacturing system (Kuka)
Source: http://www.kuka-systems.com/NR/exeres/73B56636-DC3A-

4CD8-A7E7-9D9E15345AB1

Logendran, R., & Sonthinen, A. (1997). A tabu search-based approach for scheduling job-shop type flexible 

manufacturing systems. Journal of the Operational Research Society, 48(3), 264–277.

Hall, N. G., Kamoun, H., & Sriskandarajah, C. (1997). Scheduling in robotic cells: classification, two and three 

machine cells. Operations Research, 45(3), 421–439. 



1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Hoist Scheduling and Factory Cranes
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Electroplating plant for surface treatment
Source: Surface Technology Solutions (stsindustrie.com)

Leung, J. M. Y., Zhang, G., Yang, X., Mak, R., & Lam, K. (2004). Optimal cyclic multi-hoist scheduling: a mixed 

integer programming approach. Operations Research, 52(6), 965–976.

Peterson, B., Harjunkoski, I., Hoda, S., & Hooker, J. N. (2014). Scheduling multiple factory cranes on a common 

track. Computers and Operations Research, 48, 102–112.

A paper-roll shipping store with automated transports
Source: liftandhoist.com



1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Gantry Crane Scheduling
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A rail-road terminal with gantry cranes
Source: dradio.de

Automated stacking cranes in a storage area
Source: wcms.demagrobots.info

Li, W., Wu, Y., Petering, M. E. H., Goh, M., & de Souza, R. (2009). Discrete time model and algorithms for 

container yard crane scheduling. European Journal of Operational Research, 198(1), 165–172.

Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of 

Operational Research, 164(1), 64–78.



1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Train Scheduling
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Metro Stations
Source: en.wikipedia.org/wiki/Duomo_(Milan_Metro)

Trains
Source: www.thechronicle.com.au

Liu, S., & Kozan, E. (2011). Scheduling trains with priorities: a no-wait blocking parallel-machine job-shop 

scheduling model. Transportation Science, 45(2), 175–198

Mannino, C., & Mascis, A. (2009). Optimal Real-Time Traffic Control in Metro Stations. Operations Research, 

57(4), 1026–1039



1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Gap Between Theory and Practice

• However, the classical job shop rarely applicable in practice

• Process features that are not captured

– Sequence-dependent setup times 

• Cleaning 

• Idle moving of robots

– Routing flexibility

• Multiple machines of the same type

– Storage time restrictions

• Chemical treatments

– Storage space restrictions

• Train is always on a rail section (= machines)

• Robotic cells (predefined or no storage space)
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1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

• More complicated objectives than the makespan

– Work-in process related

• Total (weighted) flow time

– Tardiness related

• Total (weighted) linear tardiness costs

• Total (weighted) squared tardiness costs

• Number of tardy jobs

– Earliness and tardiness related

• “just-in-time objectives”: sum of earliness and tardiness costs, possibly non-linear

• Numerous new job shop scheduling models appeared

– Mostly, capturing just few features

– Specific, application-oriented solution approaches

– Job shop scheduling research has become fragmented, and scheduling software 

highly specialized (Bulbul, K., & Kaminsky, P. (2013). A linear programming-based method for 

job shop scheduling. Journal of Scheduling, 16(2), 161–183)

• Our approach: develop generic models and generic methods !
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Goal of this talk: show what we do.
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2. Complex Process Features

2. Complex Process Features

• Incorporate additional process features in our disjunctive graph 

formulation
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Among all feasible selections, find a selection S minimizing 

the length of a longest path from  to  in G(S).
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2. Complex Process Features
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2. Complex Process Features 2.1. Some Process Features

2.1. Some Process Features 

Sequence-Dependent Setup Times
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• If op. j directly follows op. i on some machine, then a setup of 

duration sij occurs between the completion of i and the start of j
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weak triangle inequalities.)



2. Complex Process Features 2.1. Some Process Features

Limited Storage Time

• After the completion of operation i, the job of i can be stored (or can 

wait) at most ki time units before the processing of its next operation 

j starts (also called maximum time lag)
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2. Complex Process Features 2.1. Some Process Features

Transportation by Mobile Devices

• Mobile devices transport the jobs between the machines

• If the mobile devices can hold at most one job at any time, 

model them as machines

• Use sequence-dependent setup times for idle moves.
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2. Complex Process Features 2.1. Some Process Features

No (Intermediate) Storage Space - Blocking

• In the classical job shop, storage is not considered

– Assumption: jobs can be stored somewhere 

• However, often the storage space is limited or no (intermediate) 

storage space at all (e.g. robotic cells)

• Assume no storage space available, so called blocking.
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2. Complex Process Features 2.1. Some Process Features

No (Intermediate) Storage Space - Blocking

• In the classical job shop, storage is not considered
– Assumption: jobs can be stored somewhere 

• However, often the storage space is limited or no (intermediate) 
storage space at all (e.g. robotic cells)

• Assume no storage space available, so called blocking.

• Small number of storage units available: model them as machines
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2. Complex Process Features 2.1. Some Process Features

Routing Flexibility

• Different types of routing flexibility

– Kis, T. (2003). Job-shop scheduling with processing alternatives. European 

Journal of Operational Research, 151(2), 307–332

• Consider independent choice of the machine for each operation

– For each operation i, the machine of i is not fixed but can be chosen from a 

subset of machines Mi M

– (Variable) Mode : choice of a machine i  Mi for each operation i  I
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2. Complex Process Features 2.1. Some Process Features

• With given mode , disjunctive graph G =(V ,A,E ,E,d)
(node-induced subgraph of G where nodes not belonging to mode  are deleted)

• Extended definition of selections:
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Definition

A selection (,S): any mode  and set S  E of disjunctive arcs
A selection S is complete if S  {e,ē}   for all {e,ē}  E

A selection S is positive acyclic if the graph G(,S)=(V,A  S,d) has no cycle of 

positive length and positive cyclic otherwise.

Among all feasible selections, find a selection (,S)

minimizing the length of a longest path from  to .

Gröflin, H., Pham, D. N., & Bürgy, R. (2011). The 

flexible blocking job shop with transfer and set-

up times. Journal of Combinatorial Optimization, 

22(2), 121–144.

Job K in G



2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

2.2. An Application: The BJS-RT and ALPHABOT

The BJS-RT

• Version of the blocking job shop (with routing flexibility) characterized by

• a rail-bound transportation system consisting of mobile devices (robots, 
cranes, …)
– Processing of jobs on machines

– Transport from one machine to the next by a robot which can be chosen

– Robots move on a rail along which the machines are located

– Robots cannot pass each other, maintain a minimal distance from each other

– Each robot can handle at most one job at any time

– Each robot can move at a speed up to a (robot-dependent) speed limit

• To determine
– Machine (robot) assignments and starting times (for processing and transport op.)

– But also feasible trajectories of the robots
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2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

• Projection of the solution space onto the space of the assignment and 

time variables

– Adding disjunctive arc pairs between transfer steps executed by different 

robots!

– Yielding a formulation of the BJS-RT in a disjunctive graph

– Allowing to apply our solution approach

– Establish efficient algorithms for the feasible trajectory problem

Seminar @ GERAD, Oct 27, 2016 33

m3

m2

m1

r2

r1



See: Bürgy, R., & Gröflin, H. (2016). The blocking job shop with rail-bound 

transportation. Journal of Combinatorial Optimization, 31(1), 151–181.

e
ē

Collision avoidance:

Disjunctive arcs between transfer 

steps executed by different robots!



2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

BJS-RT Schedules
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A “location-extended” Gantt chart



2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

The ALPHABOT

• A physical model of the BJS-RT

– Machine: contains stacks of dices

(with same letter)

– Assemble words

(a small container holds the dices)

– Produce a given set of words as 

fast as possible
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2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

ALPHABOT in Action

Seminar @ GERAD, Oct 27, 2016 36

Robots and machines controlled by precedence 

constraints and NOT by (fixing) times!

Video: http://research.reinhardbuergy.ch/alphabot.php



2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

The Value of Optimization

• Example: Instance with 18 words (names)

– Simple solution (job permutation schedule):

– An optimized solution:

– Nontrivial (even impossible) to find good plans by hand

• Some benefits

– Quality improvement

– (Semi-) automating complex work (decision support)

– The role of the planner changes (addressing tactical questions)

– Increased flexibility in the planning task
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(trajectories omitted)

improvement of 40%
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3. Complicated Objectives

3. Complicated Objectives

• Consider again the timing problem in the classical job shop

• Timing subproblem: 

Given a selection S, solve:

• Its dual, is a (simple) network flow problem.

• How to solve it: an optimal solution can be found by

– Computing the earliest time schedule (S) where 

– For all vV, v(S): length of a longest path from  to node v in G(S) 
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3. Complicated Objectives 3.1. General Regular Objective

3.1. General Regular Objective

• It this procedure just applicable to the makespan objective?

• The class of regular objectives
– “the earlier the better”

– Formally, a function f: V is called regular if 
for all , ’ V,   ’  f()  f(’)

– Comprises many objectives: makespan, total flow time, total (weighted) 
tardiness, total squared tardiness, etc.

• The earliest time schedule (S) is optimal
– Let (S) be the solution space of the timing problem

– Clearly, (S)   for all   (S), implying f((S))  f(’)

– Timing problem efficiently solvable!

– Similar computational effort as for makespan objective

– Somewhat higher for “re-optimization”

• Consider: Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2015). Timing 
Problems and Algorithms: Time Decisions for Sequences of Activities. Networks, 
65(2), 102–128.
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3. Complicated Objectives 3.1. General Regular Objective

An Example with Tardiness Costs
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Makespan obj. value: 10

6

7

8

9

10

1

2

3

4

5

KLN O
Weights b: 3 1 1 1 

Total linear tardiness costs: 9 (job N 3 time units too late)

Linear tardiness costs (for each job J)

0

fJ

xJ

costs with

“weight” bJ

end time 

of job J

=bJ

no earliness

costs

fJ(xJ) =bJ max(0, xJdJ) 

vJ

p3

p2

0

v1

v2

v3

p1

dJ

Note: non-linear function in xJ,  

simple “linearization” modeling 

trick:
dJ

fJ(xJ) =bJ xJ  bJ dJ

Due dates
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An Example with Tardiness Costs
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Makespan obj. value: 10

6

7

8

9

10

1

2

3

4

5

Total linear tardiness costs: 3

(job K 3 time units too late)

Weights b: 3 1 1 1 

Total linear tardiness costs: 9 (job N 3 time units too late)

Note: non-linear function in xJ,  

simple “linearization” modeling 

trick:

With improved sequencing:

0

v1

v2

v3

vJ
p2

p1

Linear tardiness costs (for each job J)

0

fJ

xJ

costs with

“weight” bJ

end time 

of job J

=bJ

no earliness

costs

fJ(xJ) =bJ xJ  bJ dJ

dJ

p3
dJ

KLN O

+ high priority! Say weight 3 other jobs 

weight 1

6

7

8

9

10

1

2

3

4

5

KLN O



3. Complicated Objectives 3.1. General Regular Objective
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+ high priority! Say weight 3 other jobs 

weight 1

6

7

8

9

10

1

2

3

4

5

Total linear tardiness costs: 3

(job K 3 time units too late)

However, a large tardiness may be very undesirable 

in practice  squared tardiness costs:

Total squared tardiness costs: 4 (Job O 1 and Job N 1 time unit too late)

still regular objective!

Total squared tardiness costs: 9 (job K 3 time units too late)

0

fJ

xJ

tardiness costsno earliness

costs

dJ

Squared tardiness costs

fJ(xJ) =bJ max(0, xJdJ)
2

KLN O

6

7

8

9

10

1

2

3

4

5

KLN O

With improved sequencing:



3. Complicated Objectives 3.2. A Class of Convex Cost Objectives

3.2. A Class of Convex Cost Objectives
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6

7

8

9

10

1

2

3

4

5

Total squared tardiness costs: 4 (Job O 1 and Job N 1 time unit too late)

0

fJ

xJ

tardiness costsno earliness

costs

dJ

Storage:

Earliness:

0

fij

storage costspi

xj-xi

Just-in-time scheduling:

Take into account convex tardiness, earliness and 

storage costs!

KLN O

Op. i and j consecutive in some job



Total Convex Costs: The Timing Problem
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  SAv,w dvwvw 



allfor    

:subject to

    minimize



 

Makespan objective:

 
 

 

V vU

V v

SAv,w d

f

v

v

vwvw

Fv,w

vwvw










allfor    0

allfor integer  

allfor    

:subject to

    minimize









A total convex costs objective:

“Precision” of our plan.

(implied with regular objective 

and integer data)

fvw convex

0

fij

storage costspi

xj-xi

0

f J

xJ

tardiness costs
end time 

of job Jearliness

costs

dJ



 x

3. Complicated Objectives 3.2. A Class of Convex Cost Objectives

U: “large“ planning horizon

(for technical reasons)



3. Complicated Objectives 3.2. A Class of Convex Cost Objectives

A Solution Approach for This Timing Problem

• Still a network flow problem? 

• A convex cost integer dual 

network flow problem!

– Show that the Lagrangian relaxation of the problem (actually a reformulation)

can be transformed to a network flow problem with (special) convex costs

– Adapt the cost-scaling algorithm for the minimum cost flow problem to solve 

the convex cost network flow problem (obtaining also an optimal dual solution)

– Overall time complexity: O(nm log(n2/m) log(nU))

• Hence, timing problem still efficiently solvable!

– Higher time complexity than for regular objectives 
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V vU

V v

SAv,w d

f

v

v

vwvw

Fv,w

vwvw










allfor    0

allfor integer  

allfor    

:subject to

    minimize









Ahuja, R. K., Hochbaum, D. S., & Orlin, J. B. 

(2003). Solving the Convex Cost Integer Dual 

Network Flow Problem. Management Science, 

49, 950–964

fvw convex

Stephan Foldes and François Soumis. PERT and crashing 

revisited: Mathematical generalizations. European Journal of 

Operational Research 64.2 (1993): 286-294.

also shown by:
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Overview

1. The Classical Job Shop Scheduling Problem
1. Introduction

2. A Combinatorial Formulation in a Disjunctive Graph

3. Applications in Practice

2. Complex Process Features
1. Some Process Features

2. An Application: The BJS-RT and ALPHABOT

3. Complicated Objectives
1. General Regular Objective

2. A Class of Convex Cost Objectives

4. A Local Search Solution Approach
1. The Job Insertion Problem

2. Local Moves and Locally Improving Moves

3. Some Computational Results

Seminar @ GERAD, Oct 27, 2016 47



4. A Local Search Solution Approach

4. A Local Search Solution Approach

• The job shop scheduling problem with convex costs:
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Among all feasible selections, find a 

selection S with minimum total convex costs.

v1

v2

v3




v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d,F,f)

Just-in-time job shop scheduling with squared tardiness 

costs and linear storage costs

0

fi

xi x

squared tardiness 

costs
linear earliness

costs

dJ  pi

Op. i being the last 

operation of some job J

fi(xi x) = max(0, (dJ  pi)  (xi x ) ) + 

max(0, (xi x )  (dJ  pi))
2

=1

Op. i and j consecutive in some job

fi(xj xi) = xj xi  pi

0

fij

linear storage costs
pi

xj  xi

=1



v1

v2

v3




v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d,F,f)

• Local search based on a job insertion neighborhood

4. A Local Search Solution Approach

General Scheme
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S = {     }

v1

v2

v3




v5

v4

v6

v7

v8

v9

v10p1

0

p10 Neighbor generation:

Extract a job and re-insert it 

into the given schedule

„Given schedule“: fixing 

disjunctive arcs, not starting 

times!

See: 

Gröflin, H., & Klinkert, A. (2007). 

Feasible insertions in job shop 

scheduling, short cycles and stable sets. 

European Journal of Operational 

Research, 177(2)

+ high priority! Say weight 3 

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 12

Earliness:

Storage:

9

11

1

KLN O

1

2

3



v1

v2

v3




v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d,F,f)

4. A Local Search Solution Approach 4.1. The Job Insertion Problem

4.1. The Job Insertion Problem

• Problem formulation in its associated disjunctive graph:
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GK=(V,AK,EK,EK,d,F,f)

+ high priority! Say weight 3 

other jobs weight 1
6

7

8

9

104

5
1

2

3

v1

v2

v3




v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

The job insertion disjunctive 

graph of job K.

KLN O

In this graph, (complete, 

positive acyclic, feasible) 

selections (complete are 

called positive acyclic, 

feasible) insertions



4. A Local Search Solution Approach 4.1. The Job Insertion Problem

The Conflict Graph

• Characterize ALL feasible insertions in an associated graph
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v1

v2

v3

(nodes ,  and arcs of F omitted)

v5

v4

v6

v7

v8

v9

v10

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e1

ē1

e2

ē2

e3

ē3

e4

ē4

e5

ē5

e6

ē6

e7

ē7

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

e6 ē6

e7 ē7

Definition
Given a job insertion graph GJ = (VJ,AJ,EJ,EJ,d,F,f), the conflict 

graph of GJ is the undirected graph H= (EJ,U) where for any e,f

EJ,  (e,f ) U if insertion {e,f} is positive cyclic.

Is insertion {e3,e1} 

positive cyclic? 

?



4. A Local Search Solution Approach 4.1. The Job Insertion Problem

•  Nice (polyhedral) characterization of all feasible insertions

• Generate neighbor insertions in the conflict graph.
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Theorem
Given a job insertion graph GJ = (VJ,AJ,EJ,EJ,d ), the feasible insertions 

are in one-to-one correspondence with the stable sets of size  |EJ|/2 in the 

bipartite conflict graph H.

Proof, see: Gröflin, H., & Klinkert, A. (2007). Feasible insertions in 

job shop scheduling, short cycles and stable sets. European Journal of 

Operational Research, 177(2)

v1

v2

v3

(nodes ,  and arcs of F omitted)

v5

v4

v6

v7

v8

v9

v10

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e1

ē1

e2

ē2

e3

ē3

e4

ē4

e5

ē5

e6

ē6

e7

ē7

e6 ē6

e7 ē7



4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

4.2. Local Moves and Locally Improving Moves

• Replace a “critical” disjunctive arc, i.e. a disjunctive arc with 

positive arc flow (in dual of timing sub-problem), by its mate

• Generate nearest insertion: 
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e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

current insertion: {    }

neighbor insertion: {     }

Arc flow of ē2 is 2. Replace ē2 by e2. 

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

ē1

ē2ē3

ē4

ē5

ē6

ē7

+ high priority! Say weight 3 

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 12

Earliness:

Storage:

9)

11

1

1

2

3

KLN O



4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

4.2. Local Moves and Locally Improving Moves

• Replace a “critical” disjunctive arc, i.e. a disjunctive arc with 

positive arc flow (in dual of timing sub-problem), by its mate

• Generate nearest insertion: 
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e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

Arc flow of ē2 is 2. Replace ē2 by e2. 

“Swapping” a 

critical arc!

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e1

ē1

e2

ē2

e3

ē3

e4

ē4

e5

ē5

e6

ē6

e7

ē7

See e.g. Brandimarte, P., & Maiocco, M. (1999). Job shop scheduling 

with a non-regular objective: A comparison of neighbourhood structures 

based on a sequencing/timing decomposition. International Journal of 

Production Research, 37(8), 1697–1715

Tē = ē  (TS \ {e})

Proposition

Tē is a feasible insertion.

current insertion: {    }

neighbor insertion: {     }



4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

Seminar @ GERAD, Oct 27, 2016 55

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

+ high priority! Say weight 3 

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 12

Earliness:

Storage:

9)

11

1

1

2

3

KLN O

Current solution:

Neighbor solution:

6

7

8

9

104

5

Tardiness:

Total costs: 47

Earliness:

Storage:

36

1

1

1

2

3

KLN O

9 current insertion: {    }

neighbor insertion: {     }



4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

Optimal Job Insertion

• Use conflict graph and its associated MIP

formulation to compute an optimal job insertion
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e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H= (EJ,U) :

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

 

 
J

v

J

wv

vw

Ev

vv

E vx

v,w xx

Uv,w xx

xc
J










allfor    }1,0{

allfor    1

allfor    1

:subject to

    minimize

E

Opt. Job Insertion Algorithm

1. Solve MIP

2. IF MIP feasible DO 

3. compute optimal times, 

4. and store solution if best,

5. forbid current insertion

6. Go To 1.

7. ELSE stop

weights (see later)

This problem is NP-hard already in the 

classical job shop.



+ high priority! Say weight 3 

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 80

Earliness:

Storage:

1

3
1

5

1

2

3

KLN O
8

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves
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e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H= (EJ,U) :

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

 

 
J

v

J

wv

vw

Ev

vv

E vx

v,w xx

Uv,w xx

xc
J










allfor    }1,0{

allfor    1

allfor    1

:subject to

    minimize

E

Current solution:

Forbid current insertion I ={   }:

(simple way) add constraint: 

However, then ALL feasible insertions 

are enumerated! (there are already 25 

in the small example)

1


Ix
Iv

v

Opt. Job Insertion Algorithm

1. Solve MIP

2. IF MIP feasible DO 

3. compute optimal times, 

4. and store solution if best,

5. forbid current insertion

6. Go To 1.

7. ELSE stop



4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves
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e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H= (EJ,U) :

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

 

 
J

v

J

wv

vw

Ev

vv

E vx

v,w xx

Uv,w xx

xc
J










allfor    }1,0{

allfor    1

allfor    1

:subject to

    minimize

E

+ high priority! Say weight 3 

other jobs weight 1
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Tardiness:

Total costs: 80

Earliness:

Storage:
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Current solution:

Forbid current insertion I ={   }:

Better: just forbid critical arc set!

Icrit={    }: disj. arcs with positive flow 

in dual solution of timing problem.

In the example, we generate “just” 

12 insertions.

1crit

crit




Ix
Iv

v
8

Opt. Job Insertion Algorithm

1. Solve MIP

2. IF MIP feasible DO 

3. compute optimal times, 

4. and store solution if best,

5. forbid current insertion

6. Go To 1.

7. ELSE stop
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+ high priority! Say weight 3 

other jobs weight 1
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Optimal Insertion of Job K:

1

1

+ high priority! Say weight 3 

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 12

Earliness:

Storage:

9)
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1

1
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KLN O

Initial solution:



4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

• However, time consuming for medium and large problems

• Locally improving

– Use weights to generate local neighbors, and stop after a certain time (or 

number of generated insertions)

– Obtaining a

locally improving neighborhood

• A neighborhood (basic idea):

Generate a locally improved neighbor

for a subset of jobs and go to best 

neighbor
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Theorem

Opt. Job Insertion Algorithm exactly 

solves the optimal job insertion problem.
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v
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vw
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Uv,w xx
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allfor    }1,0{

allfor    1

allfor    1

:subject to

    minimize

E

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Op. 1

Op. 2

Op. 3

e6 ē6

e7 ē7
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4
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4. A Local Search Solution Approach 4.3. Some Computational Results

4.3. Some Preliminary Computational Results

• Tabu search with swap-based neighborhood 
– A neighbor for each critical arc

• Tabu search with locally improving neighborhood
– At most 4 jobs are extracted and reinserted

– At most 150 insertions are considered for each job

• Clearly, tabu search iterations are time consuming

• Hence, very important to 
– Start tabu search with a good initial solution

– Select moves wisely (and improve implementation!)

• In our example: just-in-time job shop scheduling with squared tardiness costs and linear storage costs

– Main component are tardiness costs  use solution approach for job shop with regular objectives

– See, e.g., Bürgy, R. (2016). A neighborhood for complex job shop scheduling problems with regular 
objective. Les Cahiers du GERAD No. G-2016-34. Montreal, Canada

– Total comp. time 2400 sec. (600 sec. for initial solution computation)
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TS iter.  / 100 sec. 20 jobs x 5 mach. 20 x 10

reg. objective 50000 3000

swap-based neigh. 140 30

locally improving neigh 4 1.5



4. A Local Search Solution Approach 4.3. Some Computational Results

• Comparison with straightforward MIQP

– MIQP solves some of the smallest instances (la01-la03) to optimality

– Poor solution quality for larger instances (la26-la40)

• Swap-based neighborhood has a quite good performance

– (Near-) optimal results in smallest instances

– Significant improvement of “initial solution” (up to 50%, depending on 

“tightness” of due dates)

• Locally-improving neighborhood

– Quite good results in small instances, but “moves too slowly”

– May be combined with the swap-based neighborhood (adaptive neighborhoods)
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Concluding Remarks

Concluding Remarks

• Importance and difficulty of scheduling increases
– Automated production systems (robots!)

– Versatile machines, e.g., additive manufacturing (3D printers)

– Mass customization (“batches of size 1”, upward shift of the order penetration 
point)

– Smart Manufacturing: pushed by US government 
(https://www.manufacturing.gov/), Germany (Industry 4.0, 
http://www.plattform-i40.de/), and others

• We established general models and methods for job shop scheduling 
– First, to the best of our knowledge, considering convex tardiness, earliness, and 

storage costs

– More complex process features can be considered as well

• Future work
– Just-in-time job shop scheduling: Improve details (implementation, parameters, 

etc.) and use parallelization techniques

– Apply methods to interesting problems in practice
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https://www.manufacturing.gov/
http://www.plattform-i40.de/
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MERCI, THANK YOU!

Just-in-time schedule

for instance la26


