
Seminar @ GERAD

Oct 27, 2016

Modeling and solving job shop problems with

complex process features and complicated objectives

Reinhard Bürgy
GERAD and École Polytechnique de Montréal

reinhard.burgy@gerad.ca

www. reinhardbuergy.ch

Overview

Overview

1. The Classical Job Shop Scheduling Problem
1. Introduction

2. A Combinatorial Formulation in a Disjunctive Graph

3. Applications in Practice

2. Complex Process Features
1. Some Process Features

2. An Application: The BJS-RT and ALPHABOT

3. Complicated Objectives
1. General Regular Objective

2. A Class of Convex Cost Objectives

4. A Local Search Solution Approach
1. The Job Insertion Problem

2. Local Moves and Locally Improving Moves

3. Some Computational Results

Seminar @ GERAD, Oct 27, 2016 2

Overview

Overview

1. The Classical Job Shop Scheduling Problem
1. Introduction

2. A Combinatorial Formulation in a Disjunctive Graph

3. Applications in Practice

2. Complex Process Features
1. Some Process Features

2. An Application: The BJS-RT and ALPHABOT

3. Complicated Objectives
1. General Regular Objective

2. A Class of Convex Cost Objectives

4. A Local Search Solution Approach
1. The Job Insertion Problem

2. Local Moves and Locally Improving Moves

3. Some Computational Results

Seminar @ GERAD, Oct 27, 2016 3

1. The Classical Job Shop Scheduling Problem
1.1. Introduction

• The classical job shop scheduling problem
– A fundamental optimization problem in operations research

– NP-hard and one of the most computationally stubborn combinatorial problem
(Applegate and Cook, 1991)

– Addressed by numerous researchers, and a large body of knowledge accumulated
over the last 60 years

• Given
– A set M of machines

(sometimes called resources)

– A set I of operations
(sometimes called activities)

– A set J of jobs and

– A job J J is an ordered set of operations J = (J1,J2,…J|J|),
Ji I for i {1,…|J|}, specifying a processing sequence

• (Note: J is a partition of I, i.e. each operation is in exactly one job)

– Each operation i I executed on one machine mi during pi time units

Seminar @ GERAD, Oct 27, 2016 4

M={m1,m2,m3}

I={1,2,3,4,5,6,7,8,9,10}

K=(1,2,3) L=(4,5) N=(6,7) O=(8,9,10)

J ={K,L,N,O}

1. The Classical Job Shop Scheduling Problem 1.1. Introduction

1. The Classical Job Shop Scheduling Problem 1.1. Introduction

• Data of the example:

• Find: A feasible schedule, i.e. a starting time of each operation:

– Respect the processing sequences within the jobs

– Each machine is used at most by one operation at any time (“unit capacity”)

– No preemption (no interruption) of the processing of an operation

• A visual representation of a schedule

• Objective: minimize the makespan (i.e., total duration)

Seminar @ GERAD, Oct 27, 2016 5

6

7

8

9

10

1

2

3

4

5

Gantt chart

Proc. time p First Op. Sec. Op. Third Op.

Job K m1, 4 m2, 2 m3, 3

Job L m2, 3 m3, 2 -

Job N m2, 2 m1, 2 -

Job O m3, 3 m1, 2 m2, 3

job K job L job N job O

time

M
ac

h
in

es

1. The Classical Job Shop Scheduling Problem 1.1. Introduction

A Problem Formulation

• Many different mathematical formulations exist

– A main characteristic: continuous-time / discrete-time (time-indexed)

• Some references

– Ku, Wen-Yang, and J. Christopher Beck. Mixed integer programming models

for job shop scheduling: A computational analysis. Computers & Operations

Research 73 (2016): 165-173

– Brucker, P., & Knust, S. (2011). Complex Scheduling. Springer

• A continuous-time formulation

– Based on: Manne, A. (1960). On the job-shop scheduling problem. Operations

Research, 8(2), 219–223

– Introduce fictive end operation

– Call two operation i and j consecutive if j follows i in some job

– For each machine m M, let Im be the set of operations executed on m

– For each operation i I {} , i denotes the (variable) starting time

Seminar @ GERAD, Oct 27, 2016 6

“Introduction to Constraint Programming”

30 Oct - 1 Nov, Université Concordia

1. The Classical Job Shop Scheduling Problem 1.1. Introduction

• A continuous-time formulation

– Based on: Manne, A. (1960). On the job-shop scheduling problem. Operations

Research, 8(2), 219–223

– Introduce fictive end operation

– Call two operation i and j consecutive in a job if j follows i in some job

– For each machine m M, let Im be the set of operations executed on m

– For each operation i I {}, i denotes the (variable) starting time

Seminar @ GERAD, Oct 27, 2016 7

 }{ allfor 0

allfor OR

 allfor

job ain econsecutiv and allfor

:subject to

 minimize

 Ii

I i,jpp

I ip

jip

i

mjjiiij

ii

iij

Disjunctive programming formulation Mixed-integer linear progr. formulation

mij

i

mijjji

ijiij

ii

iij

I i,jz

 Iii

I i,jMzp

 zMp

I ip

jip

allfor {0,1}

}{ allfor 0

allfor

,1

 allfor

job ain econsecutiv and allfor

:subject to

 minimize

zij: 1 if i is before j, and 0 otherwise

M: large constant, here e.g., 𝑀 = 𝑖∈𝐼 𝑝𝑖

replace OR operator by:

job structure

end operation

machine capacity

start after 0

min. end time

1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

1.2. A Combinatorial Formulation in a Disjunctive Graph

• Constraints have all the same

structure:w – v dvw

Precedence Constraints

• Simplify the formulation by

introducing a disjunctive graph

Seminar @ GERAD, Oct 27, 2016 8

 }{ allfor 0

allfor OR

 allfor

job ain econsecutiv and allfor

:subject to

 minimize

 Ii

I i,jpp

I ip

jip

i

mjjiiij

ii

iij

Disjunctive programming formulation

(and = 0, which is, actually, simple to fulfill)

Difference of two times a constant

conjunctive

disjunctive

conjunctive

• Each operation is repres.by a node

• Each precedence constraint

xw – xv dvw represented by an arc

(v,w) with weight dvw

• Set of conjunctive arc A and

• Set of disjunctive arcs E
• Disjunctive structure E :

consists of pairs of disjunctive arcs
{e, ē} E

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d)

E

)}','(),,{(allfor

 OR

, allfor

:subject to

 minimize

''''

wvwv

dd

A wvd

wvwvvwvw

vwvw

(some redundant arcs incident to and omitted)

1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

Seminar @ GERAD, Oct 27, 2016 9

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d)

1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

Selections

• Capturing solutions:

Seminar @ GERAD, Oct 27, 2016 10

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d)

Definition

A selection: any set S E of disjunctive arcs
A selection S is complete if S {e,ē} for all {e,ē} E

A selection S is positive acyclic if the graph G(S)=(V,AS,d) has no

cycle of positive length and positive cyclic otherwise.

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G(S)=(V,AS,d)

S = { }

1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

Timing Problem: Determine Starting Times

• For any selection S, we have
the following timing problem at hand:

– A potential problem!

• This is a (special) LP with the following dual:

• Well-known and easy to see:
feasible times exist if and only if S
is positive acyclic

• Hence, selection S called feasible if S is
complete and positive acyclic

Seminar @ GERAD, Oct 27, 2016 11

 SAv,w dvwvw

allfor

:subject to

 minimize

 SAv,w x

τσVv

σ v

τ v

xx

xd

vw

SAv,ww

vw

SAw,vw

wv

vw

SAv,w

vw

allfor 0

,for

 for

 for

 0

 1

 1

:subject to

 maximize

::

A (simple) network flow problem!

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G(S)=(V,AS,d)

S = { }

1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

• For any feasible selection S, an optimal solution can be found by

– Computing the earliest time schedule (S) where

– For all vV, v(S): length of a longest path from to node v in G(S)

– Can be done by topological sorting algorithm, time complexity: O(n+m)

• Timing problem efficiently solvable!

Seminar @ GERAD, Oct 27, 2016 12

6

7

8

9

10

1

2

3

4

5

Makespan: 10

Earliest time schedule of

the selection above:

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G(S)=(V,AS,d)

S = { }

1. The Classical Job Shop Scheduling Problem 1.2. A Combinatorial Formulation in a Disjunctive Graph

A Combinatorial Problem Formulation

Seminar @ GERAD, Oct 27, 2016 13

Among all feasible selections, find a selection S minimizing

the length of a longest path from to in G(S).

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d)

1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

1.3. Applications in Practice

Seminar @ GERAD, Oct 27, 2016 14

1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Liebherr: construction machines, factory in Telfs, Austria

Seminar @ GERAD, Oct 27, 2016 15

Source: https://www.youtube.com/watch?v=V-37jTfLe8o

1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Flexible Manufacturing Systems and Robotic Cells

Seminar @ GERAD, Oct 27, 2016 16

A robotic cell:
Source: http://www.canadianmetalworking.com/features/where-are-your-

robots/

Flexible manufacturing system (Kuka)
Source: http://www.kuka-systems.com/NR/exeres/73B56636-DC3A-

4CD8-A7E7-9D9E15345AB1

Logendran, R., & Sonthinen, A. (1997). A tabu search-based approach for scheduling job-shop type flexible

manufacturing systems. Journal of the Operational Research Society, 48(3), 264–277.

Hall, N. G., Kamoun, H., & Sriskandarajah, C. (1997). Scheduling in robotic cells: classification, two and three

machine cells. Operations Research, 45(3), 421–439.

1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Hoist Scheduling and Factory Cranes

Seminar @ GERAD, Oct 27, 2016 17

Electroplating plant for surface treatment
Source: Surface Technology Solutions (stsindustrie.com)

Leung, J. M. Y., Zhang, G., Yang, X., Mak, R., & Lam, K. (2004). Optimal cyclic multi-hoist scheduling: a mixed

integer programming approach. Operations Research, 52(6), 965–976.

Peterson, B., Harjunkoski, I., Hoda, S., & Hooker, J. N. (2014). Scheduling multiple factory cranes on a common

track. Computers and Operations Research, 48, 102–112.

A paper-roll shipping store with automated transports
Source: liftandhoist.com

1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Gantry Crane Scheduling

Seminar @ GERAD, Oct 27, 2016 18

A rail-road terminal with gantry cranes
Source: dradio.de

Automated stacking cranes in a storage area
Source: wcms.demagrobots.info

Li, W., Wu, Y., Petering, M. E. H., Goh, M., & de Souza, R. (2009). Discrete time model and algorithms for

container yard crane scheduling. European Journal of Operational Research, 198(1), 165–172.

Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of

Operational Research, 164(1), 64–78.

1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Train Scheduling

Seminar @ GERAD, Oct 27, 2016 19

Metro Stations
Source: en.wikipedia.org/wiki/Duomo_(Milan_Metro)

Trains
Source: www.thechronicle.com.au

Liu, S., & Kozan, E. (2011). Scheduling trains with priorities: a no-wait blocking parallel-machine job-shop

scheduling model. Transportation Science, 45(2), 175–198

Mannino, C., & Mascis, A. (2009). Optimal Real-Time Traffic Control in Metro Stations. Operations Research,

57(4), 1026–1039

1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

Gap Between Theory and Practice

• However, the classical job shop rarely applicable in practice

• Process features that are not captured

– Sequence-dependent setup times

• Cleaning

• Idle moving of robots

– Routing flexibility

• Multiple machines of the same type

– Storage time restrictions

• Chemical treatments

– Storage space restrictions

• Train is always on a rail section (= machines)

• Robotic cells (predefined or no storage space)

Seminar @ GERAD, Oct 27, 2016 20

1. The Classical Job Shop Scheduling Problem 1.3. Applications in Practice

• More complicated objectives than the makespan

– Work-in process related

• Total (weighted) flow time

– Tardiness related

• Total (weighted) linear tardiness costs

• Total (weighted) squared tardiness costs

• Number of tardy jobs

– Earliness and tardiness related

• “just-in-time objectives”: sum of earliness and tardiness costs, possibly non-linear

• Numerous new job shop scheduling models appeared

– Mostly, capturing just few features

– Specific, application-oriented solution approaches

– Job shop scheduling research has become fragmented, and scheduling software

highly specialized (Bulbul, K., & Kaminsky, P. (2013). A linear programming-based method for

job shop scheduling. Journal of Scheduling, 16(2), 161–183)

• Our approach: develop generic models and generic methods !

Seminar @ GERAD, Oct 27, 2016 21

Goal of this talk: show what we do.

Overview

Overview

1. The Classical Job Shop Scheduling Problem
1. Introduction

2. A Combinatorial Formulation in a Disjunctive Graph

3. Applications in Practice

2. Complex Process Features
1. Simple Process Features

2. More Complex Process Features

3. An Application: The BJS-RT and ALPHABOT

3. Complicated Objectives
1. General Regular Objective

2. A Class of Convex Cost Objectives

4. A Local Search Solution Approach
1. The Job Insertion Problem

2. Local Moves and Locally Improving Moves

3. Some Computational Results

Seminar @ GERAD, Oct 27, 2016 22

2. Complex Process Features

2. Complex Process Features

• Incorporate additional process features in our disjunctive graph

formulation

Seminar @ GERAD, Oct 27, 2016 23

Among all feasible selections, find a selection S minimizing

the length of a longest path from to in G(S).

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d)

2. Complex Process Features

Seminar @ GERAD, Oct 27, 2016 24

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

6

8

1

2

3

4

5

2. Complex Process Features 2.1. Some Process Features

2.1. Some Process Features

Sequence-Dependent Setup Times

Seminar @ GERAD, Oct 27, 2016 25

• If op. j directly follows op. i on some machine, then a setup of

duration sij occurs between the completion of i and the start of j

79

10

S1,9 = 2

p1+s1,9

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

p9+s9,1

vi vj

pi+sij

pj+sji

(Note: setups must satisfy so-called

weak triangle inequalities.)

2. Complex Process Features 2.1. Some Process Features

Limited Storage Time

• After the completion of operation i, the job of i can be stored (or can

wait) at most ki time units before the processing of its next operation

j starts (also called maximum time lag)

Seminar @ GERAD, Oct 27, 2016 26

6

8

1

2

3

4

5

79

10

p1

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

p9

vi vjpi

If ki = 0 then it is a no-wait constraint

(Intermediate)

Storage:

 (pi+ki)

xj – xi pi+ki

xi – xj (pi+ki)

2. Complex Process Features 2.1. Some Process Features

Transportation by Mobile Devices

• Mobile devices transport the jobs between the machines

• If the mobile devices can hold at most one job at any time,

model them as machines

• Use sequence-dependent setup times for idle moves.

Seminar @ GERAD, Oct 27, 2016 27

m1 m2
m3

init

r
1

r
2

end

4

6

r1

r2

2

1

3

5

Job K in G

v1

v2

v3

v4

v5

v6

v7

7

transport operation

processing operation

8

10

9

Idle move from

m1 to m3

2. Complex Process Features 2.1. Some Process Features

No (Intermediate) Storage Space - Blocking

• In the classical job shop, storage is not considered

– Assumption: jobs can be stored somewhere

• However, often the storage space is limited or no (intermediate)

storage space at all (e.g. robotic cells)

• Assume no storage space available, so called blocking.

Seminar @ GERAD, Oct 27, 2016 28

m3

m2

m1

4) hand-over

1) take-over 3) waiting on the machine
(thus blocking it)

Job K

2) processing

2. Complex Process Features 2.1. Some Process Features

No (Intermediate) Storage Space - Blocking

• In the classical job shop, storage is not considered
– Assumption: jobs can be stored somewhere

• However, often the storage space is limited or no (intermediate)
storage space at all (e.g. robotic cells)

• Assume no storage space available, so called blocking.

• Small number of storage units available: model them as machines

Seminar @ GERAD, Oct 27, 2016 29

m3

m2

m1

Job K

00

pi

t1,2

lJ

loading time

uJ

unloading time

processing time

transfer time

e

ē
Disjunctive arc pairs do not share

the same end nodes!

2. Complex Process Features 2.1. Some Process Features

Routing Flexibility

• Different types of routing flexibility

– Kis, T. (2003). Job-shop scheduling with processing alternatives. European

Journal of Operational Research, 151(2), 307–332

• Consider independent choice of the machine for each operation

– For each operation i, the machine of i is not fixed but can be chosen from a

subset of machines Mi M

– (Variable) Mode : choice of a machine i Mi for each operation i I

Seminar @ GERAD, Oct 27, 2016 30

v1

v2
2 v3

3

p1

Job K in G

1

3

2

m1

m2

m3

2m4

3

p1

v2
4

v3
3

2. Complex Process Features 2.1. Some Process Features

• With given mode , disjunctive graph G =(V ,A,E ,E,d)
(node-induced subgraph of G where nodes not belonging to mode are deleted)

• Extended definition of selections:

Seminar @ GERAD, Oct 27, 2016 31

v1

v2
2 v3

3

p11

3

2

m1

m2

m3

2m4

3

p1

v2
4

v3
3

Definition

A selection (,S): any mode and set S E of disjunctive arcs
A selection S is complete if S {e,ē} for all {e,ē} E

A selection S is positive acyclic if the graph G(,S)=(V,A S,d) has no cycle of

positive length and positive cyclic otherwise.

Among all feasible selections, find a selection (,S)

minimizing the length of a longest path from to .

Gröflin, H., Pham, D. N., & Bürgy, R. (2011). The

flexible blocking job shop with transfer and set-

up times. Journal of Combinatorial Optimization,

22(2), 121–144.

Job K in G

2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

2.2. An Application: The BJS-RT and ALPHABOT

The BJS-RT

• Version of the blocking job shop (with routing flexibility) characterized by

• a rail-bound transportation system consisting of mobile devices (robots,
cranes, …)
– Processing of jobs on machines

– Transport from one machine to the next by a robot which can be chosen

– Robots move on a rail along which the machines are located

– Robots cannot pass each other, maintain a minimal distance from each other

– Each robot can handle at most one job at any time

– Each robot can move at a speed up to a (robot-dependent) speed limit

• To determine
– Machine (robot) assignments and starting times (for processing and transport op.)

– But also feasible trajectories of the robots

Seminar @ GERAD, Oct 27, 2016 32

m1 m2 m3 m4

r
1

r
2

r
3

railmin. distance

(no buffers)

typical scheduling

variables

No scheduling

variables (and not in

objective function)

2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

• Projection of the solution space onto the space of the assignment and

time variables

– Adding disjunctive arc pairs between transfer steps executed by different

robots!

– Yielding a formulation of the BJS-RT in a disjunctive graph

– Allowing to apply our solution approach

– Establish efficient algorithms for the feasible trajectory problem

Seminar @ GERAD, Oct 27, 2016 33

m3

m2

m1

r2

r1

See: Bürgy, R., & Gröflin, H. (2016). The blocking job shop with rail-bound

transportation. Journal of Combinatorial Optimization, 31(1), 151–181.

e
ē

Collision avoidance:

Disjunctive arcs between transfer

steps executed by different robots!

2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

BJS-RT Schedules

Seminar @ GERAD, Oct 27, 2016 34

A “location-extended” Gantt chart

2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

The ALPHABOT

• A physical model of the BJS-RT

– Machine: contains stacks of dices

(with same letter)

– Assemble words

(a small container holds the dices)

– Produce a given set of words as

fast as possible

Seminar @ GERAD, Oct 27, 2016 35

2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

ALPHABOT in Action

Seminar @ GERAD, Oct 27, 2016 36

Robots and machines controlled by precedence

constraints and NOT by (fixing) times!

Video: http://research.reinhardbuergy.ch/alphabot.php

2. Complex Process Features 2.2. An Application: The BJS-RT and ALPHABOT

The Value of Optimization

• Example: Instance with 18 words (names)

– Simple solution (job permutation schedule):

– An optimized solution:

– Nontrivial (even impossible) to find good plans by hand

• Some benefits

– Quality improvement

– (Semi-) automating complex work (decision support)

– The role of the planner changes (addressing tactical questions)

– Increased flexibility in the planning task

Seminar @ GERAD, Oct 27, 2016 37

(trajectories omitted)

improvement of 40%

Overview

Overview

1. The Classical Job Shop Scheduling Problem
1. Introduction

2. A Combinatorial Formulation in a Disjunctive Graph

3. Applications in Practice

2. Complex Process Features
1. Some Process Features

2. An Application: The BJS-RT and ALPHABOT

3. Complicated Objectives
1. General Regular Objective

2. A Class of Convex Cost Objectives

4. A Local Search Solution Approach
1. The Job Insertion Problem

2. Local Moves and Locally Improving Moves

3. Some Computational Results

Seminar @ GERAD, Oct 27, 2016 38

3. Complicated Objectives

3. Complicated Objectives

• Consider again the timing problem in the classical job shop

• Timing subproblem:

Given a selection S, solve:

• Its dual, is a (simple) network flow problem.

• How to solve it: an optimal solution can be found by

– Computing the earliest time schedule (S) where

– For all vV, v(S): length of a longest path from to node v in G(S)

Seminar @ GERAD, Oct 27, 2016 39

 SAv,w dvwvw

allfor

:subject to

 minimize

3. Complicated Objectives 3.1. General Regular Objective

3.1. General Regular Objective

• It this procedure just applicable to the makespan objective?

• The class of regular objectives
– “the earlier the better”

– Formally, a function f: V is called regular if
for all , ’ V, ’ f() f(’)

– Comprises many objectives: makespan, total flow time, total (weighted)
tardiness, total squared tardiness, etc.

• The earliest time schedule (S) is optimal
– Let (S) be the solution space of the timing problem

– Clearly, (S) for all (S), implying f((S)) f(’)

– Timing problem efficiently solvable!

– Similar computational effort as for makespan objective

– Somewhat higher for “re-optimization”

• Consider: Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2015). Timing
Problems and Algorithms: Time Decisions for Sequences of Activities. Networks,
65(2), 102–128.

Seminar @ GERAD, Oct 27, 2016 40

3. Complicated Objectives 3.1. General Regular Objective

An Example with Tardiness Costs

Seminar @ GERAD, Oct 27, 2016 41

Makespan obj. value: 10

6

7

8

9

10

1

2

3

4

5

KLN O
Weights b: 3 1 1 1

Total linear tardiness costs: 9 (job N 3 time units too late)

Linear tardiness costs (for each job J)

0

fJ

xJ

costs with

“weight” bJ

end time

of job J

=bJ

no earliness

costs

fJ(xJ) =bJ max(0, xJdJ)

vJ

p3

p2

0

v1

v2

v3

p1

dJ

Note: non-linear function in xJ,

simple “linearization” modeling

trick:
dJ

fJ(xJ) =bJ xJ bJ dJ

Due dates

3. Complicated Objectives 3.1. General Regular Objective

An Example with Tardiness Costs

Seminar @ GERAD, Oct 27, 2016 42

Makespan obj. value: 10

6

7

8

9

10

1

2

3

4

5

Total linear tardiness costs: 3

(job K 3 time units too late)

Weights b: 3 1 1 1

Total linear tardiness costs: 9 (job N 3 time units too late)

Note: non-linear function in xJ,

simple “linearization” modeling

trick:

With improved sequencing:

0

v1

v2

v3

vJ
p2

p1

Linear tardiness costs (for each job J)

0

fJ

xJ

costs with

“weight” bJ

end time

of job J

=bJ

no earliness

costs

fJ(xJ) =bJ xJ bJ dJ

dJ

p3
dJ

KLN O

+ high priority! Say weight 3 other jobs

weight 1

6

7

8

9

10

1

2

3

4

5

KLN O

3. Complicated Objectives 3.1. General Regular Objective

Seminar @ GERAD, Oct 27, 2016 43

+ high priority! Say weight 3 other jobs

weight 1

6

7

8

9

10

1

2

3

4

5

Total linear tardiness costs: 3

(job K 3 time units too late)

However, a large tardiness may be very undesirable

in practice squared tardiness costs:

Total squared tardiness costs: 4 (Job O 1 and Job N 1 time unit too late)

still regular objective!

Total squared tardiness costs: 9 (job K 3 time units too late)

0

fJ

xJ

tardiness costsno earliness

costs

dJ

Squared tardiness costs

fJ(xJ) =bJ max(0, xJdJ)
2

KLN O

6

7

8

9

10

1

2

3

4

5

KLN O

With improved sequencing:

3. Complicated Objectives 3.2. A Class of Convex Cost Objectives

3.2. A Class of Convex Cost Objectives

Seminar @ GERAD, Oct 27, 2016 44

6

7

8

9

10

1

2

3

4

5

Total squared tardiness costs: 4 (Job O 1 and Job N 1 time unit too late)

0

fJ

xJ

tardiness costsno earliness

costs

dJ

Storage:

Earliness:

0

fij

storage costspi

xj-xi

Just-in-time scheduling:

Take into account convex tardiness, earliness and

storage costs!

KLN O

Op. i and j consecutive in some job

Total Convex Costs: The Timing Problem

Seminar @ GERAD, Oct 27, 2016 45

 SAv,w dvwvw

allfor

:subject to

 minimize

Makespan objective:

V vU

V v

SAv,w d

f

v

v

vwvw

Fv,w

vwvw

allfor 0

allfor integer

allfor

:subject to

 minimize

A total convex costs objective:

“Precision” of our plan.

(implied with regular objective

and integer data)

fvw convex

0

fij

storage costspi

xj-xi

0

f J

xJ

tardiness costs
end time

of job Jearliness

costs

dJ

 x

3. Complicated Objectives 3.2. A Class of Convex Cost Objectives

U: “large“ planning horizon

(for technical reasons)

3. Complicated Objectives 3.2. A Class of Convex Cost Objectives

A Solution Approach for This Timing Problem

• Still a network flow problem?

• A convex cost integer dual

network flow problem!

– Show that the Lagrangian relaxation of the problem (actually a reformulation)

can be transformed to a network flow problem with (special) convex costs

– Adapt the cost-scaling algorithm for the minimum cost flow problem to solve

the convex cost network flow problem (obtaining also an optimal dual solution)

– Overall time complexity: O(nm log(n2/m) log(nU))

• Hence, timing problem still efficiently solvable!

– Higher time complexity than for regular objectives

Seminar @ GERAD, Oct 27, 2016 46

V vU

V v

SAv,w d

f

v

v

vwvw

Fv,w

vwvw

allfor 0

allfor integer

allfor

:subject to

 minimize

Ahuja, R. K., Hochbaum, D. S., & Orlin, J. B.

(2003). Solving the Convex Cost Integer Dual

Network Flow Problem. Management Science,

49, 950–964

fvw convex

Stephan Foldes and François Soumis. PERT and crashing

revisited: Mathematical generalizations. European Journal of

Operational Research 64.2 (1993): 286-294.

also shown by:

Overview

Overview

1. The Classical Job Shop Scheduling Problem
1. Introduction

2. A Combinatorial Formulation in a Disjunctive Graph

3. Applications in Practice

2. Complex Process Features
1. Some Process Features

2. An Application: The BJS-RT and ALPHABOT

3. Complicated Objectives
1. General Regular Objective

2. A Class of Convex Cost Objectives

4. A Local Search Solution Approach
1. The Job Insertion Problem

2. Local Moves and Locally Improving Moves

3. Some Computational Results

Seminar @ GERAD, Oct 27, 2016 47

4. A Local Search Solution Approach

4. A Local Search Solution Approach

• The job shop scheduling problem with convex costs:

Seminar @ GERAD, Oct 27, 2016 48

Among all feasible selections, find a

selection S with minimum total convex costs.

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d,F,f)

Just-in-time job shop scheduling with squared tardiness

costs and linear storage costs

0

fi

xi x

squared tardiness

costs
linear earliness

costs

dJ pi

Op. i being the last

operation of some job J

fi(xi x) = max(0, (dJ pi) (xi x)) +

max(0, (xi x) (dJ pi))
2

=1

Op. i and j consecutive in some job

fi(xj xi) = xj xi pi

0

fij

linear storage costs
pi

xj xi

=1

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d,F,f)

• Local search based on a job insertion neighborhood

4. A Local Search Solution Approach

General Scheme

Seminar @ GERAD, Oct 27, 2016 49

S = { }

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10p1

0

p10 Neighbor generation:

Extract a job and re-insert it

into the given schedule

„Given schedule“: fixing

disjunctive arcs, not starting

times!

See:

Gröflin, H., & Klinkert, A. (2007).

Feasible insertions in job shop

scheduling, short cycles and stable sets.

European Journal of Operational

Research, 177(2)

+ high priority! Say weight 3

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 12

Earliness:

Storage:

9

11

1

KLN O

1

2

3

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

G=(V,A,E,E,d,F,f)

4. A Local Search Solution Approach 4.1. The Job Insertion Problem

4.1. The Job Insertion Problem

• Problem formulation in its associated disjunctive graph:

Seminar @ GERAD, Oct 27, 2016 50

GK=(V,AK,EK,EK,d,F,f)

+ high priority! Say weight 3

other jobs weight 1
6

7

8

9

104

5
1

2

3

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e

ēp1

0

p10

The job insertion disjunctive

graph of job K.

KLN O

In this graph, (complete,

positive acyclic, feasible)

selections (complete are

called positive acyclic,

feasible) insertions

4. A Local Search Solution Approach 4.1. The Job Insertion Problem

The Conflict Graph

• Characterize ALL feasible insertions in an associated graph

Seminar @ GERAD, Oct 27, 2016 51

v1

v2

v3

(nodes , and arcs of F omitted)

v5

v4

v6

v7

v8

v9

v10

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e1

ē1

e2

ē2

e3

ē3

e4

ē4

e5

ē5

e6

ē6

e7

ē7

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

e6 ē6

e7 ē7

Definition
Given a job insertion graph GJ = (VJ,AJ,EJ,EJ,d,F,f), the conflict

graph of GJ is the undirected graph H= (EJ,U) where for any e,f

EJ, (e,f) U if insertion {e,f} is positive cyclic.

Is insertion {e3,e1}

positive cyclic?

?

4. A Local Search Solution Approach 4.1. The Job Insertion Problem

• Nice (polyhedral) characterization of all feasible insertions

• Generate neighbor insertions in the conflict graph.

Seminar @ GERAD, Oct 27, 2016 52

Theorem
Given a job insertion graph GJ = (VJ,AJ,EJ,EJ,d), the feasible insertions

are in one-to-one correspondence with the stable sets of size |EJ|/2 in the

bipartite conflict graph H.

Proof, see: Gröflin, H., & Klinkert, A. (2007). Feasible insertions in

job shop scheduling, short cycles and stable sets. European Journal of

Operational Research, 177(2)

v1

v2

v3

(nodes , and arcs of F omitted)

v5

v4

v6

v7

v8

v9

v10

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e1

ē1

e2

ē2

e3

ē3

e4

ē4

e5

ē5

e6

ē6

e7

ē7

e6 ē6

e7 ē7

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

4.2. Local Moves and Locally Improving Moves

• Replace a “critical” disjunctive arc, i.e. a disjunctive arc with

positive arc flow (in dual of timing sub-problem), by its mate

• Generate nearest insertion:

Seminar @ GERAD, Oct 27, 2016 53

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

current insertion: { }

neighbor insertion: { }

Arc flow of ē2 is 2. Replace ē2 by e2.

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

ē1

ē2ē3

ē4

ē5

ē6

ē7

+ high priority! Say weight 3

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 12

Earliness:

Storage:

9)

11

1

1

2

3

KLN O

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

4.2. Local Moves and Locally Improving Moves

• Replace a “critical” disjunctive arc, i.e. a disjunctive arc with

positive arc flow (in dual of timing sub-problem), by its mate

• Generate nearest insertion:

Seminar @ GERAD, Oct 27, 2016 54

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

Arc flow of ē2 is 2. Replace ē2 by e2.

“Swapping” a

critical arc!

v1

v2

v3

v5

v4

v6

v7

v8

v9

v10

e1

ē1

e2

ē2

e3

ē3

e4

ē4

e5

ē5

e6

ē6

e7

ē7

See e.g. Brandimarte, P., & Maiocco, M. (1999). Job shop scheduling

with a non-regular objective: A comparison of neighbourhood structures

based on a sequencing/timing decomposition. International Journal of

Production Research, 37(8), 1697–1715

Tē = ē (TS \ {e})

Proposition

Tē is a feasible insertion.

current insertion: { }

neighbor insertion: { }

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

Seminar @ GERAD, Oct 27, 2016 55

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H:

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

+ high priority! Say weight 3

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 12

Earliness:

Storage:

9)

11

1

1

2

3

KLN O

Current solution:

Neighbor solution:

6

7

8

9

104

5

Tardiness:

Total costs: 47

Earliness:

Storage:

36

1

1

1

2

3

KLN O

9 current insertion: { }

neighbor insertion: { }

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

Optimal Job Insertion

• Use conflict graph and its associated MIP

formulation to compute an optimal job insertion

Seminar @ GERAD, Oct 27, 2016 56

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H= (EJ,U) :

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

J

v

J

wv

vw

Ev

vv

E vx

v,w xx

Uv,w xx

xc
J

allfor }1,0{

allfor 1

allfor 1

:subject to

 minimize

E

Opt. Job Insertion Algorithm

1. Solve MIP

2. IF MIP feasible DO

3. compute optimal times,

4. and store solution if best,

5. forbid current insertion

6. Go To 1.

7. ELSE stop

weights (see later)

This problem is NP-hard already in the

classical job shop.

+ high priority! Say weight 3

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 80

Earliness:

Storage:

1

3
1

5

1

2

3

KLN O
8

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

Seminar @ GERAD, Oct 27, 2016 57

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H= (EJ,U) :

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

J

v

J

wv

vw

Ev

vv

E vx

v,w xx

Uv,w xx

xc
J

allfor }1,0{

allfor 1

allfor 1

:subject to

 minimize

E

Current solution:

Forbid current insertion I ={ }:

(simple way) add constraint:

However, then ALL feasible insertions

are enumerated! (there are already 25

in the small example)

1

Ix
Iv

v

Opt. Job Insertion Algorithm

1. Solve MIP

2. IF MIP feasible DO

3. compute optimal times,

4. and store solution if best,

5. forbid current insertion

6. Go To 1.

7. ELSE stop

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

Seminar @ GERAD, Oct 27, 2016 58

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Conflict Graph H= (EJ,U) :

Op. 1

Op. 2

Op. 3

“into Job”“out of Job”

e6 ē6

e7 ē7

J

v

J

wv

vw

Ev

vv

E vx

v,w xx

Uv,w xx

xc
J

allfor }1,0{

allfor 1

allfor 1

:subject to

 minimize

E

+ high priority! Say weight 3

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 80

Earliness:

Storage:

1

3
1

5

1

2

3

KLN O

Current solution:

Forbid current insertion I ={ }:

Better: just forbid critical arc set!

Icrit={ }: disj. arcs with positive flow

in dual solution of timing problem.

In the example, we generate “just”

12 insertions.

1crit

crit

Ix
Iv

v
8

Opt. Job Insertion Algorithm

1. Solve MIP

2. IF MIP feasible DO

3. compute optimal times,

4. and store solution if best,

5. forbid current insertion

6. Go To 1.

7. ELSE stop

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

Seminar @ GERAD, Oct 27, 2016 59

+ high priority! Say weight 3

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 7

Earliness:

Storage:

1

11

2

1

2

3

KLN O

Optimal Insertion of Job K:

1

1

+ high priority! Say weight 3

other jobs weight 1
6

7

8

9

104

5

Tardiness:

Total costs: 12

Earliness:

Storage:

9)

11

1

1

2

3

KLN O

Initial solution:

4. A Local Search Solution Approach 4.2. Local Moves and Locally Improving Moves

• However, time consuming for medium and large problems

• Locally improving

– Use weights to generate local neighbors, and stop after a certain time (or

number of generated insertions)

– Obtaining a

locally improving neighborhood

• A neighborhood (basic idea):

Generate a locally improved neighbor

for a subset of jobs and go to best

neighbor

Seminar @ GERAD, Oct 27, 2016 60

Theorem

Opt. Job Insertion Algorithm exactly

solves the optimal job insertion problem.

J

v

J

wv

vw

Ev

vv

E vx

v,w xx

Uv,w xx

xc
J

allfor }1,0{

allfor 1

allfor 1

:subject to

 minimize

E

e1 ē1

e2 ē2

e3 ē3

e4 ē4

e5 ē5

Op. 1

Op. 2

Op. 3

e6 ē6

e7 ē7

1

2

1

2

4

1

2

0

4. A Local Search Solution Approach 4.3. Some Computational Results

4.3. Some Preliminary Computational Results

• Tabu search with swap-based neighborhood
– A neighbor for each critical arc

• Tabu search with locally improving neighborhood
– At most 4 jobs are extracted and reinserted

– At most 150 insertions are considered for each job

• Clearly, tabu search iterations are time consuming

• Hence, very important to
– Start tabu search with a good initial solution

– Select moves wisely (and improve implementation!)

• In our example: just-in-time job shop scheduling with squared tardiness costs and linear storage costs

– Main component are tardiness costs use solution approach for job shop with regular objectives

– See, e.g., Bürgy, R. (2016). A neighborhood for complex job shop scheduling problems with regular
objective. Les Cahiers du GERAD No. G-2016-34. Montreal, Canada

– Total comp. time 2400 sec. (600 sec. for initial solution computation)

Seminar @ GERAD, Oct 27, 2016 61

TS iter. / 100 sec. 20 jobs x 5 mach. 20 x 10

reg. objective 50000 3000

swap-based neigh. 140 30

locally improving neigh 4 1.5

4. A Local Search Solution Approach 4.3. Some Computational Results

• Comparison with straightforward MIQP

– MIQP solves some of the smallest instances (la01-la03) to optimality

– Poor solution quality for larger instances (la26-la40)

• Swap-based neighborhood has a quite good performance

– (Near-) optimal results in smallest instances

– Significant improvement of “initial solution” (up to 50%, depending on

“tightness” of due dates)

• Locally-improving neighborhood

– Quite good results in small instances, but “moves too slowly”

– May be combined with the swap-based neighborhood (adaptive neighborhoods)

Seminar @ GERAD, Oct 27, 2016 62

Concluding Remarks

Concluding Remarks

• Importance and difficulty of scheduling increases
– Automated production systems (robots!)

– Versatile machines, e.g., additive manufacturing (3D printers)

– Mass customization (“batches of size 1”, upward shift of the order penetration
point)

– Smart Manufacturing: pushed by US government
(https://www.manufacturing.gov/), Germany (Industry 4.0,
http://www.plattform-i40.de/), and others

• We established general models and methods for job shop scheduling
– First, to the best of our knowledge, considering convex tardiness, earliness, and

storage costs

– More complex process features can be considered as well

• Future work
– Just-in-time job shop scheduling: Improve details (implementation, parameters,

etc.) and use parallelization techniques

– Apply methods to interesting problems in practice

Seminar @ GERAD, Oct 27, 2016 63

https://www.manufacturing.gov/
http://www.plattform-i40.de/

Seminar @ GERAD, Oct 27, 2016 64

MERCI, THANK YOU!

Just-in-time schedule

for instance la26

