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Linux
• A form of Unix, an operating system whose origins go back 

to the 1960s, i.e. long before the creation of  Windows and 
MacOS.

• There is a sharp distinction between the the operating 
system as such and its graphical display (windows and the use 
of a pointing device).

• When you connect to a Calcul Québec server, your 
interaction with the operating system will normally be based 
on a command line interface, i.e. the keyboard. 

• This may seem old-fashioned but it’s very robust and 
powerful, once a few basic commands are learned. 
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Connecting to Clusters
• The only way to connect to a Calcul Québec server is using 
ssh (Secure Shell).

• With ssh, your password is encrypted before being sent over 
the network. 

• To connect, you obviously need to know the name of the 
machine (e.g. helios.calculquebec.ca), your username and 
finally your password. 

• The first time that you connect to a machine, ssh will ask if 
you want to store the remote machine’s key to which you 
normally answer “yes”. 
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Connecting to Clusters
• If you use OS X, you already have ssh – you simply need to 

open Terminal.app (in /Applications/Utilities) and type 
ssh username@machine_name

• Windows doesn’t come with a default ssh client but it’s easy 
to download a free one.

• Common choices are “PuTTY” and “MobaXterm” and if you 
use the former, this is what the program looks like when it 
starts up:



6

Connecting to Clusters
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Connecting to Clusters
• You can also use a virtual machine by means of which you can

run Linux (with its ssh client) inside of a machine running 
Windows or OS X. 

• You can disconnect from a remote Linux machine by typing
the command exit
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Connecting to Clusters
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Connecting to Clusters
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Connecting to Clusters
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The Linux Filesystem
• With Linux (like OS X) the filesystem begins with the root 

directory “ / ”, the usual Windows nomenclature (C:\, D:\
etc.) doesn’t exist.

• When you connect to a Calcul Québec server you always 
begin in your home directory, typically /home/username in 
Linux. 

• During your connection you always see the “Message of the 
Day” from the remote server. 

• The first time you connect your home directory is of course 
almost empty. 
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The Linux Filesystem

• Some basic commands for navigating around the filesystem 
are: 

mkdir Create a directory
ls Display the contents of a directory
cd Change directory
cp [-r] Copy a file or directory
mv Move a file or directory
rm [-r] Delete a file or directory
pwd Display the current directory
• You can learn more about these commands by using the 

command man
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The Linux Filesystem
• There are also some useful shortcuts: 
~  your home directory, 
.    the current directory, 
..   the directory above the current directory.
• Linux also has the wildcard * that can be used to carry out a 

command on several files, e.g. 
ls *.py

to see all the files whose name ends in .py
• In general the commands are all lower case, a practice 

common to Unix, C and C++, and the operating system 
assumes you know what you’re doing. 
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The Linux Filesystem
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The Linux Filesystem
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The Linux Filesystem
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The Linux Filesystem
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The Linux Filesystem
• When choosing names for your files and directories, avoid 

blank spaces and accented characters as these can lead to 
frequent problems

• It’s wiser to use mes_pensees instead of “mes pensées”. 
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The Linux Filesystem
• There are a variety of tools for displaying the content of a 

text file. 
• You can begin with the command wc (word count) which 

gives the size of a file in terms of the number of lines, words 
and bytes.

• To see the actual contents of the file, you can use cat (the 
entire file), more and less (interactive control of the 
display).

• If you’re only interested in the beginning or end of a file, you 
can use head and tail.

• The following command shows the last 50 lines of this file:
tail –n 50 resultat.txt
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The Linux Filesystem
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The Linux Filesystem
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Text Editors
• With mkdir you can create directories but to create a text 

file you need to use a text editor. 
• There are several different ones available in Linux and you 

are free to choose the one which you prefer. 
• Among the most simple is nano and with more features and 

complexity there is vi.
• These two editors rely exclusively on the keyboard but there 

are text editors with a graphical interface like emacs and 
nedit.

• These last two are very similar to programs like Notepad (in 
Windows) and TextEdit.app (in OS X).



23

Text Editors
• You can begin by using nano, where you open a file with the 

command
nano file_name

• You can use the arrow buttons of the keyboard to move 
around, delete letters and add text. Most commands for the 
editor begin with the Ctrl button, for example:

Ctrl-X to exit the editor
Ctrl-W to search for a word or phrase
Ctrl-O to write the current content to the file
Ctrl-K to delete a line
Ctrl-G for help
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Text Editors



25

Text Editors
• One problem associated with text files is how to determine 

the end of a line? 
• Windows doesn’t answer this question the same way that 

Linux does, so we can have a pair of tools to handle the 
conversion of line endings from one standard to another:  
dos2unix and unix2dos.

• It’s essential to avoid using word processing software like 
Word, Pages or OpenOffice: these programs do not create 
genuine plain text files.

• Under Windows the best idea is to use Notepad.
• Under OS X, open Terminal.app and then you can use nano, vi 

or emacs.
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Transferring Files
• To transfer files between Calcul Québec servers and your 

workstation you should use scp and sftp.
• These two programs belong to the same family as ssh and 

also encrypt the connection. 
• The program scp works like the Unix command cp (copy):
scp username@machine:research/out.dat result.dat

• As for sftp, you use it like ftp: you can use cd to move 
around and put/get to transfer files.

• Under Windows, you can use a program like WinSCP which 
functions in a manner similar to Windows Explorer (with a 
graphical interface etc.).
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Transferring Files
• Since it’s unlikely that your workstation has an ssh server, you 

should always start your file transfers from your workstation 
and not from the remote Calcul Québec machine. 

• If you have a lot of data to transfer or need to transfer it 
over a great distance (e.g. from Vancouver to Montreal), you 
should consider using Globus.

• Globus is a national service national to simplify file transfer 
between the servers of Compute Canada. 

• To learn more you can read the following page
https://docs.computecanada.ca/wiki/Globus
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Transferring Files
• If you’re planning on transferring a lot of data (tens of 

gigabytes or more), we would prefer if you discuss this with 
technical support staff before uploading the data.
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Transferring Files
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Transferring Files
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Transferring Files
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Transferring Files
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Transferring Files
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Bash
• In the Unix vocabulary, the “shell” (which interprets your 

commands) is a software layer which is a bridge between the 
kernel and the user. 

• There are several different shells in existence for Linux but 
the default on Calcul Québec servers is the bash (Bourne 
Again Shell).

• You can customize this shell environment by modifying the 
file .bashrc in your $HOME.

• You can for instance create your own shortcuts for common 
commands, such as:

alias ll='ls –l'
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Bash
• In other cases, you can modify the value of an environment 

variable. 
• Some environment variables are already defined for you, like 

$HOME, $PATH and, on Calcul Québec machines, 
$SCRATCH.

• To see the current value of an environment variable you can 
type 

echo $variable_name
• If this variable isn’t defined, the system returns nothing. 
• To give a value to a variable you use the command
export variable_name=value
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Bash
• One of the most important environment variables is the 

$PATH.
• It determines where the operating system will look for the 

applications that you call. 
• The $PATH is a list of directories separated by a colon (:).
• When you type a command, Linux will search each one of 

these directories in a sequential order until it finds the 
command. 

• You can see where Linux found the command by typing
which command_name
• To append a directory to your PATH,
export PATH=$PATH:/new/directory
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Bash
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Bash
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Bash
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Bash
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Software Modules
• In general, we prefer that Calcul Québec staff install the 

software and libraries that you need.
• We use use the command module to adapt all the 

environment variables necessary for the use of this software. 
• The most common options are the following:
module list
module avail
module load module_name
module unload module_name
module purge
module swap old_module new_module
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Software Modules
• With the module command, you can choose a particular 

version of a program while another user can use some other 
version.

• You can also automatically load modules by adding the line 
module load at the end of the .bashrc file in your 
$HOME.

• There are sometimes dependencies among modules that 
have to be satisfied, in which case you can first execute the 
command module load A and then module load B. 
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Software Modules



44

Software Modules
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Software Modules
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Software Modules
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Software Modules
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Compiling your Code
• Several of the modules discussed earlier concern compilers 

and development environments for languages like C, C++ and 
Java. 

• The most widely used compilers for Linux are Gnu (gcc and 
g++) and Intel (icc and icpc).

• You’re free to choose the compiler (or Java environment) and 
version that best suit your needs.

• You can also load modules corresponding to various external 
libraries that your code makes use of, such as CPLEX.

• Compiling your code can be relatively simple if it’s just a 
single source file.  
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Compiling your Code
• A command like
g++ -O3 –march=native –o my_prog main.cpp –lcplex -lm

may well suffice in this case.
• If you have multiple source and header files with various 

dependencies among them, the best way to handle the build 
process is using a makefile. 

• This is a plain text file named makefile that is in the build 
directory for your code.

• This file contains a set of rules specifying how to build the 
object files (*.o) and then link these together along with any 
external libraries to create the binary file.  
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Compiling your Code
OBJS = code1.o code2.o main.o
CXX = g++
LIBS = -lcplex –lboost_system –lm
CXX_FLAGS = -O3 –march=native –Wall

prog: $(OBJS)
$(CXX) $(CXX_FLAGS) –o prog $(OBJS) $(LIBS)

code1.o: code1.cpp global.h
$(CXX) $(CXX_FLAGS) –c code1.cpp

code2.o: code2.cpp code2.h global.h
$(CXX) $(CXX_FLAGS) -c code2.cpp

main.o: main.cpp global.h
$(CXX) $(CXX_FLAGS) –c main.cpp

clean:
rm –f $(OBJS)
rm –f prog
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Compiling your Code
• This was a very simple makefile for a project involving just 

three source files and two header files but a makefile can be 
as complicated as needed.

• Note that any modules which you needed for building your 
program, such as external libraries, will also need to be 
loaded in order to run the resulting binary.

• If you’re doing significant amounts of code development, it 
would be wise to consider learning a version control tool like 
Git, Mercurial or Subversion.
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Using CPLEX
• The cluster Briarée at the Université de Montréal has several 

different CPLEX modules available for use. 
• The latest version 12.7.0 is however unavailable due to the 

age of Briarée. 
• You can define and solve an optimization model using 
oplrun or the C++ and Java interfaces that CPLEX 
provides. 

• We will give a couple of examples here of using Java or C++ 
to solve a toy model.  
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Using CPLEX
Maximize 

x1 + 2x2 + 3x3

subject to
–x1 + x2 + x3 ≤ 20
x1 – 3x2 + x3 ≤ 30

with these bounds
0 ≤ x1 ≤ 40
0 ≤ x2 < ∞
0 ≤ x3 < ∞
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Using CPLEX
• We can solve this model in Java using the following code:
static void populateByRow(IloMPModeler model,IloNumVar[][] 

var,IloRange[][] rng) throws IloException
{

double[] lb = {0.0, 0.0, 0.0};
double[] ub = {40.0, Double.MAX_VALUE, Double.MAX_VALUE};
String[] varname = {"x1", "x2", "x3"};
IloNumVar[] x = model.numVarArray(3, lb, ub, varname);
var[0] = x;
double[] objvals = {1.0, 2.0, 3.0};
model.addMaximize(model.scalProd(x, objvals));
rng[0] = new IloRange[2];
rng[0][0] = model.addLe(model.sum(model.prod(-1.0, 
x[0]),model.prod( 1.0, x[1]),model.prod( 1.0, x[2])), 20.0, 
"c1");
rng[0][1] = model.addLe(model.sum(model.prod( 1.0, 
x[0]),model.prod(-3.0, x[1]),model.prod( 1.0, x[2])), 30.0, 
"c2");

}
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Using CPLEX
• We can compile and run it as follows:
$ javac -classpath $CLASSPATH -O -d . LPex1.java
$ java -d64 -Djava.library.path=$LD_LIBRARY_PATH -classpath

$CLASSPATH: LPex1 -r
Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve time = 0.01 sec. (0.00 ticks)

Iteration log . . .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000
Solution status = Optimal
Solution value = 202.5
Variable 0: Value = 40.0 Reduced cost = 3.5
Variable 1: Value = 17.5 Reduced cost = -0.0
Variable 2: Value = 42.5 Reduced cost = -0.0
Constraint 0: Slack = 0.0 Pi = 2.75
Constraint 1: Slack = 0.0 Pi = 0.25
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Using CPLEX
• To solve this model using C++ we can use this program:
static void populatebyrow (IloModel model, IloNumVarArray x, 

IloRangeArray c)
{

IloEnv env = model.getEnv();
x.add(IloNumVar(env, 0.0, 40.0));
x.add(IloNumVar(env));
x.add(IloNumVar(env));
model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2]));
c.add( - x[0] + x[1] + x[2] <= 20);
c.add( x[0] - 3 * x[1] + x[2] <= 30);
x[0].setName("x1");
x[1].setName("x2");
x[2].setName("x3");
c[0].setName("c1");
c[1].setName("c2");
model.add(c);

} // END populatebyrow
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Using CPLEX
• To compile and run it we use the commands:
$ g++ -c -m64 -O -fPIC -fno-strict-aliasing -fexceptions -

DIL_STD ilolpex1.cpp -o ilolpex1.o
$ g++ -m64 -O -fPIC -fno-strict-aliasing -fexceptions -DIL_STD -o 

ilolpex1 ilolpex1.o -lconcert -lilocplex -lcplex -lm -lpthread
$ ./ilolpex1 -r
Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve time = 0.00 sec. (0.00 ticks)

Iteration log . . .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000
Solution status = Optimal
Solution value = 202.5
Values = [40, 17.5, 42.5]
Slacks = [0, 0]
Duals = [2.75, 0.25]
Reduced Costs = [3.5, -0, -0]
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Using CPLEX
• The method in both cases is to prepare a small source code 

file containing the model, to compile it with the appropriate 
flags and options and then to execute it from the command 
line.

• On a Calcul Québec server like Briarée, preparing the source 
file and compiling can be done interactively on the login node 
but the final step should be done inside a job.

• You can also use the login node for very brief (a minute or 
two) tests to check that your compiled binary starts cleanly. 

• In the next section we’ll see how to submit a job.
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Exercises
• You should begin by connecting to Briarée using either your 

own account (if you have one) or the following guest account: 
Username = user06
Password = Red17path#3
Machine = briaree1.calculquebec.ca
• Once you’re connected, follow these steps: 
1. Create a directory using your name and enter it.
2. Copy the contents of the directory /tmp/cplex-exercises

to this directory.
3. Enter the directory cpp or java and use the Makefile

there to compile and run the sample problem: remember to 
load the necessary modules.
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Job Submission
• The machine that you login to with ssh is what’s called the 

login or head node of the cluster. 
• This node is the gate to the cluster for everyone and is thus 

not at all appropriate for your computations which should 
take place on the cluster’s compute nodes.

• You use a text editor to create a small file called a job script 
and which specifies the resources needed for the job as well 
as the actions to be performed, line by line.

• Once this file has been created you can submit the job to the 
scheduler by the command qsub script.pbs
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Job Submission
• To see the current state of the cluster you can use the 

command qstat.
• If you want to delete one of your jobs you can use the 

command 
qdel job_id
• On Briarée you can use the command pbs_free to see 

how many processors are free. 
• Some limits for the Calcul Québec machines at the UdeM: a 

job cannot run for more than 168 hours and if your job 
requires more than 48 processors you need to demonstrate 
that the software can use them efficiently. 

• You can submit as many jobs as you want. 
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Job Submission
#!/bin/bash
#PBS –l walltime=52:00:00
#PBS –l nodes=1:ppn=12
#PBS –l mem=12gb
#PBS –j oe
#PBS –r n
#PBS –o output.txt

module load cplex_studio/12.6.0

cd $SCRATCH/research

./my_code p1 p2 > output.dat
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Job Submission
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Job Submission
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Job Submission
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Job Submission
• A common situation is to run the same (serial) program with 

many different parameters, each of these calculations being 
independent of the others.

• While you can submit hundreds of individual jobs, one for 
each set of parameter values, there are alternative ways of 
organizing such calculations.

• One approach is to pack 12 calculations into a single job, 
since there are 12 CPU cores on a Briarée node. 

• To do this we will have 12 lines in the job script and add a 
command at the end to wait for them to complete.
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Job Submission
#!/bin/bash
#PBS –l walltime=10:00:00
#PBS –l nodes=1:ppn=12
#PBS –j oe
#PBS –r n
#PBS –o output.txt

module load software/2.3

cd research

./my_prog p1 &

./my_prog p2 &

./my_prog p3 &

.

.

.

./my_prog p12 &
wait
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Job Submission
• This is certainly an improvement but still suffers from some 

limitations.
• What if some of these parameters lead to much longer run 

times than others?
• If we have hundreds or thousands of such computations to 

do, creating and managing all of these job submission scripts 
can quickly become tiresome. 

• There is a better alternative using a program called Gnu 
Parallel, available as a module on all Calcul Québec machines.
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Job Submission
• With Gnu Parallel you specify the command to be executed 

as well as different sets of parameters for this command and 
the number of processors available.

• Gnu Parallel will then ensure that as soon as one sub-job is 
completed a new one is started. 

• Gnu Parallel can also be used across more than one node 
and comes with a mechanism to write its progress to a log 
file. 

• The different sets of parameters to be run can be specified 
using a rule or if there no such simple rule, a text file with 
one case per line can be given to Gnu Parallel.  
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Job Submission
#!/bin/bash
#PBS –l walltime=10:00:00
#PBS –l nodes=1:ppn=12
#PBS –j oe
#PBS –r n
#PBS –o output.txt

module load GNUParallel/20141022

cd research

parallel –-jobs 12 –-workdir $PWD ./my_prog foo {1} ::: p1 p2 p3 

parallel –-jobs 12 –-workdir $PWD ./my_prog {1} :::: parms.txt  
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Job Submission
• A final option is the use of job arrays.
• With this method we use the PBS job scheduler to create 

sub-jobs that will be run as resources become available.
• We can access the identity of a sub-job in the submission 

script using the environment variable $PBS_ARRAY_INDEX 
• If we need to provide different command line parameters for 

each sub-job, we can read these from a text file with one set 
of parameters per line. 



72

Job Submission
#!/bin/bash
#PBS –l walltime=1:00:00
#PBS –l nodes=1:ppn=1
#PBS –j oe
#PBS –r n
#PBS –J 1-200

cd research

parameters=`sed -n "${PBS_ARRAY_INDEX} p" input.txt`

parameterArray=($parameters)

x=${parameterArray[0]}
y=${parameterArray[1]}
z=${parameterArray[2]}

./my_prog $x $y $z
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Additional Resources
• Read the man page man for commands that you use.
• There are many online tutorials as well as other Internet 

documentation on command line Linux.
• Books like
The Linux Command Line: A Complete Introduction by W. Shotts
Beginning the Linux Command Line by S. van Vugt
• Given that the basic commands haven’t changed since the 

beginnings of Unix in the 1970s, you can also make use of an 
older book on the subject.
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Additional Resources
• You can send an e-mail in French or English to the address
support@calculquebec.ca

to ask for help from the Calcul Québec staff.
• If you have a question about the use of a particular machine 

like Briarée you can send your e-mail to
briaree@calculquebec.ca
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Exercices
• Begin by connecting again to Briarée using either your own 

account (if you have one) or the following guest account: 
Username = user06
Password = Red17path#3
Machine = briaree1.calculquebec.ca
• Once you’re connected, return to the directory that you 

created for the first exercise and create a job submission 
script to run a CPLEX job for either Java or C++. 

• This will be a serial job and should run in just five minutes 
(less in fact); remember to load the appropriate modules in 
your job script. 


