
First Steps on Calcul
Québec’s Servers

Daniel Stubbs
March 16, 2017

2

Linux
• A form of Unix, an operating system whose origins go back

to the 1960s, i.e. long before the creation of Windows and
MacOS.

• There is a sharp distinction between the the operating
system as such and its graphical display (windows and the use
of a pointing device).

• When you connect to a Calcul Québec server, your
interaction with the operating system will normally be based
on a command line interface, i.e. the keyboard.

• This may seem old-fashioned but it’s very robust and
powerful, once a few basic commands are learned.

3

Summary
1. Connecting to Clusters
2. The Linux Filesystem
3. Text Editors
4. Transferring Files
5. Bash
6. Software Modules
7. Compiling Your Code
8. Using CPLEX
9. Job Submission

4

Connecting to Clusters
• The only way to connect to a Calcul Québec server is using
ssh (Secure Shell).

• With ssh, your password is encrypted before being sent over
the network.

• To connect, you obviously need to know the name of the
machine (e.g. helios.calculquebec.ca), your username and
finally your password.

• The first time that you connect to a machine, ssh will ask if
you want to store the remote machine’s key to which you
normally answer “yes”.

5

Connecting to Clusters
• If you use OS X, you already have ssh – you simply need to

open Terminal.app (in /Applications/Utilities) and type
ssh username@machine_name

• Windows doesn’t come with a default ssh client but it’s easy
to download a free one.

• Common choices are “PuTTY” and “MobaXterm” and if you
use the former, this is what the program looks like when it
starts up:

6

Connecting to Clusters

7

Connecting to Clusters
• You can also use a virtual machine by means of which you can

run Linux (with its ssh client) inside of a machine running
Windows or OS X.

• You can disconnect from a remote Linux machine by typing
the command exit

8

Connecting to Clusters

9

Connecting to Clusters

10

Connecting to Clusters

11

The Linux Filesystem
• With Linux (like OS X) the filesystem begins with the root

directory “ / ”, the usual Windows nomenclature (C:\, D:\
etc.) doesn’t exist.

• When you connect to a Calcul Québec server you always
begin in your home directory, typically /home/username in
Linux.

• During your connection you always see the “Message of the
Day” from the remote server.

• The first time you connect your home directory is of course
almost empty.

12

The Linux Filesystem

• Some basic commands for navigating around the filesystem
are:

mkdir Create a directory
ls Display the contents of a directory
cd Change directory
cp [-r] Copy a file or directory
mv Move a file or directory
rm [-r] Delete a file or directory
pwd Display the current directory
• You can learn more about these commands by using the

command man

13

The Linux Filesystem
• There are also some useful shortcuts:
~ your home directory,
. the current directory,
.. the directory above the current directory.
• Linux also has the wildcard * that can be used to carry out a

command on several files, e.g.
ls *.py

to see all the files whose name ends in .py
• In general the commands are all lower case, a practice

common to Unix, C and C++, and the operating system
assumes you know what you’re doing.

14

The Linux Filesystem

15

The Linux Filesystem

16

The Linux Filesystem

17

The Linux Filesystem

18

The Linux Filesystem
• When choosing names for your files and directories, avoid

blank spaces and accented characters as these can lead to
frequent problems

• It’s wiser to use mes_pensees instead of “mes pensées”.

19

The Linux Filesystem
• There are a variety of tools for displaying the content of a

text file.
• You can begin with the command wc (word count) which

gives the size of a file in terms of the number of lines, words
and bytes.

• To see the actual contents of the file, you can use cat (the
entire file), more and less (interactive control of the
display).

• If you’re only interested in the beginning or end of a file, you
can use head and tail.

• The following command shows the last 50 lines of this file:
tail –n 50 resultat.txt

20

The Linux Filesystem

21

The Linux Filesystem

22

Text Editors
• With mkdir you can create directories but to create a text

file you need to use a text editor.
• There are several different ones available in Linux and you

are free to choose the one which you prefer.
• Among the most simple is nano and with more features and

complexity there is vi.
• These two editors rely exclusively on the keyboard but there

are text editors with a graphical interface like emacs and
nedit.

• These last two are very similar to programs like Notepad (in
Windows) and TextEdit.app (in OS X).

23

Text Editors
• You can begin by using nano, where you open a file with the

command
nano file_name

• You can use the arrow buttons of the keyboard to move
around, delete letters and add text. Most commands for the
editor begin with the Ctrl button, for example:

Ctrl-X to exit the editor
Ctrl-W to search for a word or phrase
Ctrl-O to write the current content to the file
Ctrl-K to delete a line
Ctrl-G for help

24

Text Editors

25

Text Editors
• One problem associated with text files is how to determine

the end of a line?
• Windows doesn’t answer this question the same way that

Linux does, so we can have a pair of tools to handle the
conversion of line endings from one standard to another:
dos2unix and unix2dos.

• It’s essential to avoid using word processing software like
Word, Pages or OpenOffice: these programs do not create
genuine plain text files.

• Under Windows the best idea is to use Notepad.
• Under OS X, open Terminal.app and then you can use nano, vi

or emacs.

26

Transferring Files
• To transfer files between Calcul Québec servers and your

workstation you should use scp and sftp.
• These two programs belong to the same family as ssh and

also encrypt the connection.
• The program scp works like the Unix command cp (copy):
scp username@machine:research/out.dat result.dat

• As for sftp, you use it like ftp: you can use cd to move
around and put/get to transfer files.

• Under Windows, you can use a program like WinSCP which
functions in a manner similar to Windows Explorer (with a
graphical interface etc.).

27

Transferring Files
• Since it’s unlikely that your workstation has an ssh server, you

should always start your file transfers from your workstation
and not from the remote Calcul Québec machine.

• If you have a lot of data to transfer or need to transfer it
over a great distance (e.g. from Vancouver to Montreal), you
should consider using Globus.

• Globus is a national service national to simplify file transfer
between the servers of Compute Canada.

• To learn more you can read the following page
https://docs.computecanada.ca/wiki/Globus

28

Transferring Files
• If you’re planning on transferring a lot of data (tens of

gigabytes or more), we would prefer if you discuss this with
technical support staff before uploading the data.

29

Transferring Files

30

Transferring Files

31

Transferring Files

32

Transferring Files

33

Transferring Files

34

Bash
• In the Unix vocabulary, the “shell” (which interprets your

commands) is a software layer which is a bridge between the
kernel and the user.

• There are several different shells in existence for Linux but
the default on Calcul Québec servers is the bash (Bourne
Again Shell).

• You can customize this shell environment by modifying the
file .bashrc in your $HOME.

• You can for instance create your own shortcuts for common
commands, such as:

alias ll='ls –l'

35

Bash
• In other cases, you can modify the value of an environment

variable.
• Some environment variables are already defined for you, like

$HOME, $PATH and, on Calcul Québec machines,
$SCRATCH.

• To see the current value of an environment variable you can
type

echo $variable_name
• If this variable isn’t defined, the system returns nothing.
• To give a value to a variable you use the command
export variable_name=value

36

Bash
• One of the most important environment variables is the

$PATH.
• It determines where the operating system will look for the

applications that you call.
• The $PATH is a list of directories separated by a colon (:).
• When you type a command, Linux will search each one of

these directories in a sequential order until it finds the
command.

• You can see where Linux found the command by typing
which command_name
• To append a directory to your PATH,
export PATH=$PATH:/new/directory

37

Bash

38

Bash

39

Bash

40

Bash

41

Software Modules
• In general, we prefer that Calcul Québec staff install the

software and libraries that you need.
• We use use the command module to adapt all the

environment variables necessary for the use of this software.
• The most common options are the following:
module list
module avail
module load module_name
module unload module_name
module purge
module swap old_module new_module

42

Software Modules
• With the module command, you can choose a particular

version of a program while another user can use some other
version.

• You can also automatically load modules by adding the line
module load at the end of the .bashrc file in your
$HOME.

• There are sometimes dependencies among modules that
have to be satisfied, in which case you can first execute the
command module load A and then module load B.

43

Software Modules

44

Software Modules

45

Software Modules

46

Software Modules

47

Software Modules

48

Compiling your Code
• Several of the modules discussed earlier concern compilers

and development environments for languages like C, C++ and
Java.

• The most widely used compilers for Linux are Gnu (gcc and
g++) and Intel (icc and icpc).

• You’re free to choose the compiler (or Java environment) and
version that best suit your needs.

• You can also load modules corresponding to various external
libraries that your code makes use of, such as CPLEX.

• Compiling your code can be relatively simple if it’s just a
single source file.

49

Compiling your Code
• A command like
g++ -O3 –march=native –o my_prog main.cpp –lcplex -lm

may well suffice in this case.
• If you have multiple source and header files with various

dependencies among them, the best way to handle the build
process is using a makefile.

• This is a plain text file named makefile that is in the build
directory for your code.

• This file contains a set of rules specifying how to build the
object files (*.o) and then link these together along with any
external libraries to create the binary file.

50

Compiling your Code
OBJS = code1.o code2.o main.o
CXX = g++
LIBS = -lcplex –lboost_system –lm
CXX_FLAGS = -O3 –march=native –Wall

prog: $(OBJS)
$(CXX) $(CXX_FLAGS) –o prog $(OBJS) $(LIBS)

code1.o: code1.cpp global.h
$(CXX) $(CXX_FLAGS) –c code1.cpp

code2.o: code2.cpp code2.h global.h
$(CXX) $(CXX_FLAGS) -c code2.cpp

main.o: main.cpp global.h
$(CXX) $(CXX_FLAGS) –c main.cpp

clean:
rm –f $(OBJS)
rm –f prog

51

Compiling your Code
• This was a very simple makefile for a project involving just

three source files and two header files but a makefile can be
as complicated as needed.

• Note that any modules which you needed for building your
program, such as external libraries, will also need to be
loaded in order to run the resulting binary.

• If you’re doing significant amounts of code development, it
would be wise to consider learning a version control tool like
Git, Mercurial or Subversion.

52

Using CPLEX
• The cluster Briarée at the Université de Montréal has several

different CPLEX modules available for use.
• The latest version 12.7.0 is however unavailable due to the

age of Briarée.
• You can define and solve an optimization model using
oplrun or the C++ and Java interfaces that CPLEX
provides.

• We will give a couple of examples here of using Java or C++
to solve a toy model.

53

Using CPLEX
Maximize

x1 + 2x2 + 3x3

subject to
–x1 + x2 + x3 ≤ 20
x1 – 3x2 + x3 ≤ 30

with these bounds
0 ≤ x1 ≤ 40
0 ≤ x2 < ∞
0 ≤ x3 < ∞

54

Using CPLEX
• We can solve this model in Java using the following code:
static void populateByRow(IloMPModeler model,IloNumVar[][]

var,IloRange[][] rng) throws IloException
{

double[] lb = {0.0, 0.0, 0.0};
double[] ub = {40.0, Double.MAX_VALUE, Double.MAX_VALUE};
String[] varname = {"x1", "x2", "x3"};
IloNumVar[] x = model.numVarArray(3, lb, ub, varname);
var[0] = x;
double[] objvals = {1.0, 2.0, 3.0};
model.addMaximize(model.scalProd(x, objvals));
rng[0] = new IloRange[2];
rng[0][0] = model.addLe(model.sum(model.prod(-1.0,
x[0]),model.prod(1.0, x[1]),model.prod(1.0, x[2])), 20.0,
"c1");
rng[0][1] = model.addLe(model.sum(model.prod(1.0,
x[0]),model.prod(-3.0, x[1]),model.prod(1.0, x[2])), 30.0,
"c2");

}

55

Using CPLEX
• We can compile and run it as follows:
$ javac -classpath $CLASSPATH -O -d . LPex1.java
$ java -d64 -Djava.library.path=$LD_LIBRARY_PATH -classpath

$CLASSPATH: LPex1 -r
Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve time = 0.01 sec. (0.00 ticks)

Iteration log . . .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000
Solution status = Optimal
Solution value = 202.5
Variable 0: Value = 40.0 Reduced cost = 3.5
Variable 1: Value = 17.5 Reduced cost = -0.0
Variable 2: Value = 42.5 Reduced cost = -0.0
Constraint 0: Slack = 0.0 Pi = 2.75
Constraint 1: Slack = 0.0 Pi = 0.25

56

Using CPLEX
• To solve this model using C++ we can use this program:
static void populatebyrow (IloModel model, IloNumVarArray x,

IloRangeArray c)
{

IloEnv env = model.getEnv();
x.add(IloNumVar(env, 0.0, 40.0));
x.add(IloNumVar(env));
x.add(IloNumVar(env));
model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2]));
c.add(- x[0] + x[1] + x[2] <= 20);
c.add(x[0] - 3 * x[1] + x[2] <= 30);
x[0].setName("x1");
x[1].setName("x2");
x[2].setName("x3");
c[0].setName("c1");
c[1].setName("c2");
model.add(c);

} // END populatebyrow

57

Using CPLEX
• To compile and run it we use the commands:
$ g++ -c -m64 -O -fPIC -fno-strict-aliasing -fexceptions -

DIL_STD ilolpex1.cpp -o ilolpex1.o
$ g++ -m64 -O -fPIC -fno-strict-aliasing -fexceptions -DIL_STD -o

ilolpex1 ilolpex1.o -lconcert -lilocplex -lcplex -lm -lpthread
$./ilolpex1 -r
Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve time = 0.00 sec. (0.00 ticks)

Iteration log . . .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000
Solution status = Optimal
Solution value = 202.5
Values = [40, 17.5, 42.5]
Slacks = [0, 0]
Duals = [2.75, 0.25]
Reduced Costs = [3.5, -0, -0]

58

Using CPLEX
• The method in both cases is to prepare a small source code

file containing the model, to compile it with the appropriate
flags and options and then to execute it from the command
line.

• On a Calcul Québec server like Briarée, preparing the source
file and compiling can be done interactively on the login node
but the final step should be done inside a job.

• You can also use the login node for very brief (a minute or
two) tests to check that your compiled binary starts cleanly.

• In the next section we’ll see how to submit a job.

59

Exercises
• You should begin by connecting to Briarée using either your

own account (if you have one) or the following guest account:
Username = user06
Password = Red17path#3
Machine = briaree1.calculquebec.ca
• Once you’re connected, follow these steps:
1. Create a directory using your name and enter it.
2. Copy the contents of the directory /tmp/cplex-exercises

to this directory.
3. Enter the directory cpp or java and use the Makefile

there to compile and run the sample problem: remember to
load the necessary modules.

60

Job Submission
• The machine that you login to with ssh is what’s called the

login or head node of the cluster.
• This node is the gate to the cluster for everyone and is thus

not at all appropriate for your computations which should
take place on the cluster’s compute nodes.

• You use a text editor to create a small file called a job script
and which specifies the resources needed for the job as well
as the actions to be performed, line by line.

• Once this file has been created you can submit the job to the
scheduler by the command qsub script.pbs

61

Job Submission
• To see the current state of the cluster you can use the

command qstat.
• If you want to delete one of your jobs you can use the

command
qdel job_id
• On Briarée you can use the command pbs_free to see

how many processors are free.
• Some limits for the Calcul Québec machines at the UdeM: a

job cannot run for more than 168 hours and if your job
requires more than 48 processors you need to demonstrate
that the software can use them efficiently.

• You can submit as many jobs as you want.

62

Job Submission
#!/bin/bash
#PBS –l walltime=52:00:00
#PBS –l nodes=1:ppn=12
#PBS –l mem=12gb
#PBS –j oe
#PBS –r n
#PBS –o output.txt

module load cplex_studio/12.6.0

cd $SCRATCH/research

./my_code p1 p2 > output.dat

63

Job Submission

64

Job Submission

65

Job Submission

66

Job Submission
• A common situation is to run the same (serial) program with

many different parameters, each of these calculations being
independent of the others.

• While you can submit hundreds of individual jobs, one for
each set of parameter values, there are alternative ways of
organizing such calculations.

• One approach is to pack 12 calculations into a single job,
since there are 12 CPU cores on a Briarée node.

• To do this we will have 12 lines in the job script and add a
command at the end to wait for them to complete.

67

Job Submission
#!/bin/bash
#PBS –l walltime=10:00:00
#PBS –l nodes=1:ppn=12
#PBS –j oe
#PBS –r n
#PBS –o output.txt

module load software/2.3

cd research

./my_prog p1 &

./my_prog p2 &

./my_prog p3 &

.

.

.

./my_prog p12 &
wait

68

Job Submission
• This is certainly an improvement but still suffers from some

limitations.
• What if some of these parameters lead to much longer run

times than others?
• If we have hundreds or thousands of such computations to

do, creating and managing all of these job submission scripts
can quickly become tiresome.

• There is a better alternative using a program called Gnu
Parallel, available as a module on all Calcul Québec machines.

69

Job Submission
• With Gnu Parallel you specify the command to be executed

as well as different sets of parameters for this command and
the number of processors available.

• Gnu Parallel will then ensure that as soon as one sub-job is
completed a new one is started.

• Gnu Parallel can also be used across more than one node
and comes with a mechanism to write its progress to a log
file.

• The different sets of parameters to be run can be specified
using a rule or if there no such simple rule, a text file with
one case per line can be given to Gnu Parallel.

70

Job Submission
#!/bin/bash
#PBS –l walltime=10:00:00
#PBS –l nodes=1:ppn=12
#PBS –j oe
#PBS –r n
#PBS –o output.txt

module load GNUParallel/20141022

cd research

parallel –-jobs 12 –-workdir $PWD ./my_prog foo {1} ::: p1 p2 p3

parallel –-jobs 12 –-workdir $PWD ./my_prog {1} :::: parms.txt

71

Job Submission
• A final option is the use of job arrays.
• With this method we use the PBS job scheduler to create

sub-jobs that will be run as resources become available.
• We can access the identity of a sub-job in the submission

script using the environment variable $PBS_ARRAY_INDEX
• If we need to provide different command line parameters for

each sub-job, we can read these from a text file with one set
of parameters per line.

72

Job Submission
#!/bin/bash
#PBS –l walltime=1:00:00
#PBS –l nodes=1:ppn=1
#PBS –j oe
#PBS –r n
#PBS –J 1-200

cd research

parameters=`sed -n "${PBS_ARRAY_INDEX} p" input.txt`

parameterArray=($parameters)

x=${parameterArray[0]}
y=${parameterArray[1]}
z=${parameterArray[2]}

./my_prog $x $y $z

73

Additional Resources
• Read the man page man for commands that you use.
• There are many online tutorials as well as other Internet

documentation on command line Linux.
• Books like
The Linux Command Line: A Complete Introduction by W. Shotts
Beginning the Linux Command Line by S. van Vugt
• Given that the basic commands haven’t changed since the

beginnings of Unix in the 1970s, you can also make use of an
older book on the subject.

74

Additional Resources
• You can send an e-mail in French or English to the address
support@calculquebec.ca

to ask for help from the Calcul Québec staff.
• If you have a question about the use of a particular machine

like Briarée you can send your e-mail to
briaree@calculquebec.ca

75

Exercices
• Begin by connecting again to Briarée using either your own

account (if you have one) or the following guest account:
Username = user06
Password = Red17path#3
Machine = briaree1.calculquebec.ca
• Once you’re connected, return to the directory that you

created for the first exercise and create a job submission
script to run a CPLEX job for either Java or C++.

• This will be a serial job and should run in just five minutes
(less in fact); remember to load the appropriate modules in
your job script.

