

An Overview of Optimization

History, Classification and Methods Part 1

MORSC Tutorial

Carlos Armando Zetina Concordia University and CIRRELT

Outline

- What is Optimization?
- History of Optimization
 - Pre Simplex Era
 - Modern Optimization and applications
- NEOS server

What is optimization?

an act, process, or methodology of making something (as a design, system, or decision) as fully perfect, functional, or effective as possible; specifically : the mathematical procedures (as finding the maximum of a function) involved in this.
 Merriam Webster Dictionary.

In Operations Research

Optimization=Mathematical Optimization

No Heuristics or Metaheuristics in this part.

Mathematical Optimization

A Mathematical Optimization Problem:

(P)
$$\min h(x)$$

s.t. $f_t(x) \le 0 \quad \forall t \in T$
 $g_s(x) = 0 \quad \forall s \in S$
 $x \in X$

 $h, f, g: X \to \mathbb{R}$ X is a finite dimensioned space T,S are arbitrary index sets

4

Mathematical Optimization refers to the study of these problems' properties, development and implementation of solution algorithms and their application to real world problems. -*Mathematical Optimization Society (INFORMS)*

Mathematical Optimization

A Mathematical Optimization Problem:

 $\begin{array}{ll} (\mathrm{P}) & \min h(x) & \text{Objective Function} \\ \mathrm{s.t.} & f_t(x) \leq 0 & \forall t \in T \text{ Inequality Constraints} \\ & g_s(x) = 0 & \forall s \in S \text{ Equality Constraints} \end{array} \right] \begin{array}{l} \text{Constraints} \\ & x \in X & \text{Variable Definition} \end{array}$

Mathematical Optimization refers to the study of these problems' properties, development and implementation of solution algorithms and their application to real world problems. -*Mathematical Optimization Society (INFORMS)*

Some Applications of Optimization

Finance

- Portfolio Management
- Asset Pricing
- Risk Management
- Financial Valuation

Transportation-Airlines

- Fleet assignment
- Crew Scheduling
- Fuel Allocation
- Airport Traffic Planning

Manufacturing

- Product Mix Planning
- Inventory Management
- Job Scheduling
- Maintenance Scheduling

Transportation- Other

- Vehicle Routing
- Depot/Warehouse location
- Transportation System Man.
- Fleet Management

Health Care

- Staff Scheduling
- Radiation Exposure
- Blood Bank collection
- Ambulance Scheduling

Communications/Computing

- Circuit Design
- Office Automation
- Telephone Operator Scheduling

ETC...

The History of Optimization

- Can be traced back as far as 300 BC
- Can be divided into two eras:

Pre Simplex Era

Joseph Fourier

1947

Pierre de Fermat

Modern Optimization

George Dantzig

7

Ralph Gomory

Photos from: Wikipedia.com

The History of Optimization

Pre Simplex Era

Joseph Fourier

Pierre de Fermat

Leonid Kantorovich

Tjalling Koopmans

Photos from: Wikipedia.com

Pre Simplex Era

- **300 BC** Euclid of Alexandria
- 200 BC Zenodorus
- 1615 Johannes Kepler
- 1636 Pierre de Fermat

- Minimal Distance b/w a point and a line
- Square is rectangle with max area given perimeter

9

- Dido's Problem- Semicircle
- Wine Barrel Problem
- Secretary Problem
- Derivative vanishes at local optimum
- 1660s I. Newton, G. Leibniz
- Calculus of Variations

Pre Simplex Era

- 1736Leonard Euler
- 1754Joseph Lagrange
- 1823Joseph Fourier
- 1902Gyula Farkas
- 1905Johan Jensen
- 1917Harris Hancock

- Foundations of Graph Theory
- Maximum and Minimum w/ Constraints
- Rudimentary LP Programming algorithm
- Farkas Lemma
- Convex Functions
- Published Theory of Maxima and Minima

Pre Simplex Era

- 1927Karl Menger
- 1931Dénes König
- 1935 Hassler Whitney
- 1939 Leonid Kantorovich
- 1941Frank Hitchcock
- 1942Tjalling Koopmans

- Max number of p-q paths=Minimum Cut
- Maximum matching= Minimum vertex cover in bipartite graphs
- Matroids
- Linear Programming Methods
- Transportation Problem
- Transportation Problem
- Sensitivity Analysis
- Transportation Problem

The History of Optimization

Modern Optimizaion

George Dantzig

Ralph Gomory

Martin Grötschel

12

Jack Edmonds

Photos from: Wikipedia.com, zib.de, Combinatorial Optimization-"Eureka you Shrink!

The first problem of Modern Optimization

1943 RDAs for a moderately active 154-pound

Given a set of Recommended Dietary Allowances and a list of 77 foods with their prices and nutrition content what is the cheapest survival diet possible?

Table 1.

man.	
Nutrient	RDA
Calories	3,000 kcalories
Protein	70 grams
Calcium	0.8 grams
Iron	12 milligrams
Vitamin A	5,000 IU
Thiamine	1.8 milligrams
(Vitamin B_1)	_
Riboflavin	2.7 milligrams
(Vitamin B_2)	
Niacin	18 milligrams
Ascorbic Acid	75 milligrams
(Vitamin C)	

Linear Programming (Optimization)

Stigler's Diet (1943)

(P)
$$\min \sum_{j \in J} c_j x_j$$

s.t.
$$\sum_{j \in J} a_{ij} x_j \ge RDA_i \quad \forall i \in I$$
$$x_j \ge 0 \quad \forall j \in J$$

J denote the set of 77 food items

 c_j denote the cost of food item $j \in J$.

I denote the set of 9 essential nutrients in a diet

 RDA_i denote the amount of nutrient $i \in I$ necessary to survive.

 a_{ij} denote the amount of nutrient $i \in I$ contained in 1 unit of food item $j \in J$.

 x_j denote the amount of food item $j \in J$ to be consumed in the diet.

Linear Programming (Optimization)

Stigler's Diet (1943)

Linear Programming

(P)
$$\min \sum_{j \in J} c_j x_j$$

s.t.
$$\sum_{j \in J} a_{ij} x_j \ge RDA_i \quad \forall i \in I$$

$$x_j \ge 0 \quad \forall j \in J$$

Objective Function- Linear

Constraints- Finite and Linear

Variable Definition- Continuous

Solved by Trial and Error with Mathematical intuition

Solving LPs Today

Linear Programming (Algorithms)

- 1947 George Dantzig
- 1954 Carlton Lemke
- 1954 G. Dantzig and W. Orchard Havs
 - Orchard Hays L. Ford and D.
- 1958 L. Ford and I Fulkerson

- Primal Simplex
 Dual Simplex
 - Revised Simplex Method
- Column Generation
- 1979 Leonid Khachiyan
- Ellipsoid Method

1984 Narendra Karmarkar + Interior Point Method

- Polynomial running time

Problem Definition- Salesperson assignment

Assume you have 3 salespersons in different cities and three other cities to which you would like them to visit with the below cost matrix of flights. To which city should I assign each salesperson to minimize cost?

$From \ \setminus \ To$	Denver	Edmonton	Fargo	
Austin	250	400	350	
Boston	400	600	350	
Chicago	200	400	250	

Combinatorial Optimization

The Assignment Problem

(P)
$$\min \sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij}$$

s.t.
$$\sum_{i \in V_1} x_{ij} = 1 \quad \forall j \in V_2$$
$$\sum_{j \in V_2} x_{ij} = 1 \quad \forall i \in V_1$$
$$x_{ij} \in \{0, 1\} \quad \forall i \in I, j \in J$$

 V_1 denote the set of salesperson

 V_2 denote the set of cities salespersons must visit.

 c_{ij} denote the cost of travelling for salesperson $i \in V_1$ to travel to city $j \in V_2$.

 x_{ij} denote whether salesperson $i \in V_1$ will travel to city $j \in V_2$.

Combinatorial Optimization

The Assignment Problem

$$\begin{array}{ll} \text{(P)} & \min \sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij} & \text{Objective} \\ \text{s.t.} & \sum_{i \in V_1} x_{ij} = 1 & \forall j \in V_2 & \\ & \sum_{i \in V_2} x_{ij} = 1 & \forall i \in V_1 & \\ & \sum_{j \in V_2} x_{ij} = 1 & \forall i \in I, j \in J & \text{Variable} \end{array}$$

Objective Function-Linear

Constraints- Finite and Linear

Variable Definition- Binary

Combinatorial Optimization

The Assignment Problem

(P)
$$\min \sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij}$$

Current state of the art solution method

The Hungarian Method Harold Kuhn

s.t.
$$\sum_{i \in V_1} x_{ij} = 1 \quad \forall j \in V_2$$

$$\sum_{j \in V_2} x_{ij} = 1 \quad \forall i \in V_1$$

$$x_{ij} \in \{0, 1\} \quad \forall i \in I, j \in J$$

Combinatorial Optimization

The Assignment Problem				
(P)	$\min \sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij}$	Result (\bar{P}) min $\sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij}$		
s.t.	$\sum_{i \in V_1} x_{ij} = 1 \forall j \in V_2$	s.t. $\sum_{i \in V_1} x_{ij} = 1 \forall j \in V_2$		
	$\sum_{j \in V_2} x_{ij} = 1 \forall i \in V_1$	$\sum_{j \in V_2} x_{ij} = 1 \forall i \in V_1$		
	$x_{ij} \in \{0,1\} \forall i \in I, j \in J$	$x_{ij} \in [0,1] \forall i \in V_1, j \in V_2$		

Solving the Assignment Problem

Linear Programming (Algorithms)

- 1947 George Dantzig
- Primal Simplex

1954 Carlton Lemke

- Dual Simplex
- 1954 G. Dantzig and W. Orchard Hays
- Revised Simplex Method

1958 L. Ford and D. Fulkerson

- Column Generation
- 1979 Leonid Khachiyan Ellipsoid Method

1984 Narendra Karmarkar • Interior Point Method

There are 4 potential depot locations, each with a different installation cost, that must serve a set of 8 retail stores. Each depot has a restricted list of possible stores it can serve as below. What is the minimum cost of installing depots such that each store has at least one depot?

Store	Depot 1	Depot 2	Depot 3	Depot 4
1	Yes	No	No	Yes
2	No	Yes	No	Yes
3	No	Yes	Yes	Yes
4	No	No	Yes	Yes
5	Yes	Yes	No	No
6	No	No	Yes	Yes
7	Yes	No	No	No
8	Yes	Yes	No	No

Combinatorial Optimization

The Set Covering Problem

(P)
$$\min \sum_{j \in J} f_j x_j$$

s.t.
$$\sum_{j \in J} a_{ij} x_j \ge 1 \quad \forall i \in I$$
$$x_j \in \{0, 1\} \quad \forall j \in J$$

J denote the set of depots. f_j denote the cost of opening depot $j \in J$. *I* denote the set of retail stores. a_{ij} is 1 if depot $j \in J$ can serve store $i \in I$. x_i denote whether depot j is open.

Combinatorial Optimization

The Set Covering Problem

(P)
$$\min \sum_{j \in J} f_j x_j$$

s.t.
$$\sum_{j \in J} a_{ij} x_j \ge 1 \quad \forall i \in I$$
$$x_j \in \{0, 1\} \quad \forall j \in J$$

Objective Function-Linear

Constraints- Finite and Linear

Variable Definition- Binary

Combinatorial Optimization

The Set Covering ProblemQuestion(P) $\min \sum_{j \in J} f_j x_j$ (P) $\min \sum_{j \in J} f_j x_j$ s.t. $\sum_{j \in J} a_{ij} x_j \ge 1$ $\forall i \in I$ $x_j \in \{0,1\}$ $\forall j \in J$ s.t. $x_j \in [0,1]$ $\forall j \in J$

Combinatorial Optimization

The Set Covering ProblemQuestion(P) $\min \sum_{j \in J} f_j x_j$ (P) $\min \sum_{j \in J} f_j x_j$ s.t. $\sum_{j \in J} a_{ij} x_j \ge 1$ $\forall i \in I$ $x_j \in \{0,1\}$ $\forall j \in J$ s.t. $\sum_{j \in J} a_{ij} x_j \ge 1$ $\forall j \in J$ $\forall j \in J$

Cannot use LP Methods Is NP Hard

Combinatorial Optimization

Question

What changed between

The Set Covering Problem & The Assignment Problem ? Totally Unimodular Matrix

Total Unimodularity = Easy Problems

Solving Combinatorial Problems

Easy Problems

-Specialized Algorithms that run in Polynomial Time

-Find a complete formulation and solve the LP model

-Model may be polynomial in size.

-Model may have exponential number of inequalities but can be separated in polynomial time.

Solving Combinatorial Problems

Difficult Problems (NP hard)

-Approximation Algorithms

-Cutting Plane Methods

-Branch and Bound/ Branch and Cut Most often used in practice

-Group Theoretic Approach Seldom used in practice

Problem Definition- A 24 hour restaurant

In a 24 hour restaurant they have established shifts for their full time workers to cover the day. However, demand for workers varies for each 3 hour time window. Due to the time of day, the wage for a full time worker in each shift varies. What is the minimum cost of employing workers to satisfy demand?

	Shift				
Time Window	1	2	3	4	Workers Required
6 a.m.–9 a.m.	x			Х	55
9 a.m12 noon	х				46
12 noon-3 p.m.	Х	Х			59
3 p.m.–6 p.m.		Х			23
6 p.m.–9 p.m.		Х	Х		60
9 p.m12 a.m.			х		38
12 a.m3 a.m.			Х	х	20
3 a.m6 a.m.				х	30
Wage rate per 9 h shift	\$135	\$140	\$190	\$188	

TABLE 2.1 Time Windows for Shift Workers

Integer Programming (Optimization)

The Set Covering Problem

(P)
$$\min \sum_{j \in J} f_j x_j$$

s.t.
$$\sum_{j \in J} a_{jt} x_j \ge d_t \quad \forall t \in T$$
$$x_j \ge 0 \text{ and integer} \quad \forall j \in J$$

J denote the set of shifts.

 f_i denote the wage of an employee on that shift

T denote the set of 3 hour time windows.

 d_t is the # of workers needed in time window t

 a_{jt} is 1 if shift $j \in J$ covers time window $t \in T$.

 x_j denote the number of employees in shift $j \in J$.

-Approximation Algorithms

-Branch and Bound/ Branch and Cut

-Cutting Plane Methods

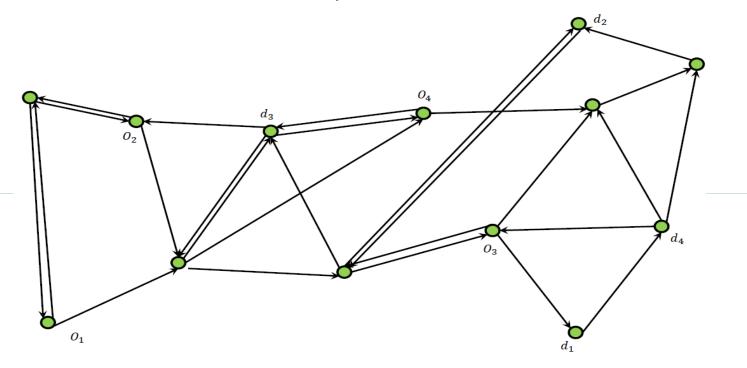
- -Gomory Cuts
- Valid Inequalities
- Lift and Project

-Decomposition Methods

-Group Theoretic Approach

Problem Definition- Network Loading Problem

Suppose you are given a network and a set of requests with different origin and destination nodes and demand quantity that you have to route. For each link you can install a structure that allows a number u of units to pass. The cost of each structure varies per link. What is the minimum cost of installation to send all the requests?



Problem Definition- Network Loading Problem

Suppose you are given a network and a set of requests with different origin and destination nodes and demand quantity that you have to route. For each link you can install a structure that allows a number u of units to pass. The cost of each structure varies per link. What is the minimum cost of installation to send all the requests?

Notation

A denote the set of arcs.	K denote the set of commodities.
c_{ij} is the cost of installing a structure on arc $(i, j) \in A$	o(k) is the origin of a commodity k.
u is the flow capacity of a structure installed	d(k) is the destination of a commodity k.
N denote the set of nodes	W_k is the demand quantity of a
f_{ij}^k is the portion of commodity k routed on arc $(i, j) \in A$.	commodity k.
$x_{i,i}$ denotes the number of structures installed on arc $(i, j) \in A$.	

Mixed Integer Programming (Optimization)

$$(P) \quad \min \sum_{ij \in A} c_{ij} x_{ij}$$
s.t.
$$\sum_{j \in N: (j,i) \in A} f_{ji}^k - \sum_{j \in N: (i,j) \in A} f_{ij}^k = \begin{cases} -1 & \text{if } i = o(k) \\ 0 & \text{if } i \notin \{o(k), d(k)\} \end{cases} \quad \forall i \in N, \forall k \in K \\ 1 & \text{if } i = d(k) \end{cases}$$

$$\sum_{k \in K} W_k f_{ij}^k \le u x_{ij} \quad \forall ij \in A$$

$$f_{ij}^k \ge 0 \quad \forall ij \in A, k \in K \\ x_{ij} \ge 0 \text{ and integer} \quad \forall ij \in A$$

Solving Mixed Integer Programs

- -Approximation Algorithms
- -Branch and Bound/ Branch and Cut
- -Cutting Plane Methods
 - -Mixed Integer Chvatal-Gomory Cuts
 - Mixed Integer Rounding Cuts
 - Disjunctive Cuts

-Decomposition Methods

-Benders Decomposition

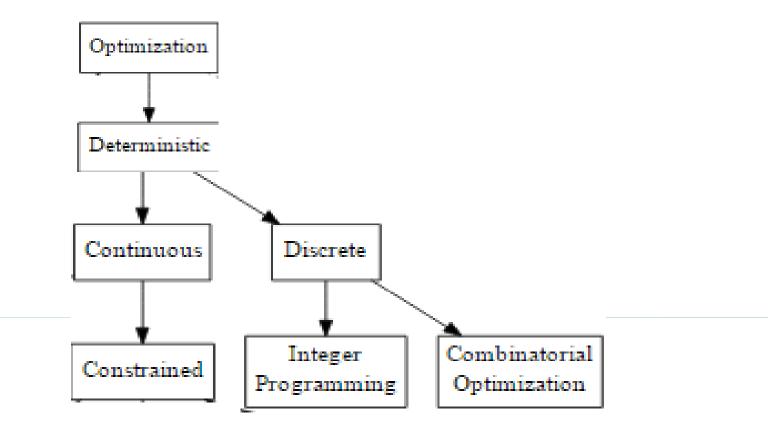
-Group Theoretic Approach

Summary of today

Focused on Linear objective functions and a finite set of linear constraints

Variables	Classification		Solution Methods
Continuous	Continuous Programming		Simplex (Primal/Dual), Column Generation, Ellipsoid Method, Interior Point Methods
Binary	Combinatorial	Easy	Polynomial time Algorithms, LP methods with separation oracles
Integer	Integer Programmi	ng	Implicit Enumeration, Cutting Planes, Group
Continuous & Integer	Mixed Integer Program	nming	Theoretic Approach, Decomposition Methods

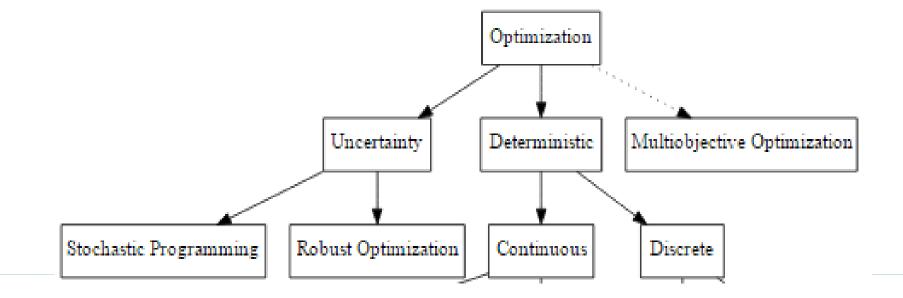
Summary of today



But there's a lot more ...

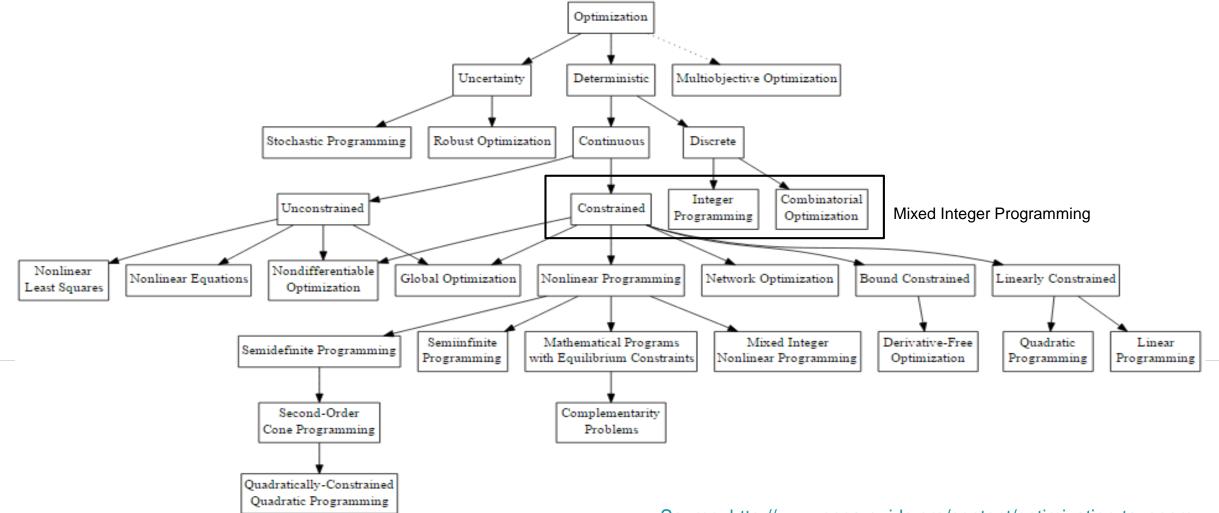
- Multiple Objective Functions
- Convex and Non Convex objective functions
- Convex and Non Convex constraints
- Infinite number of constraints
- Uncertain parameter data

An Approximate Taxonomy (by the NEOS Guide)



Source: http://www.neos-guide.org/content/optimization-taxonomy

An Approximate Taxonomy (by the NEOS Guide)



Source: http://www.neos-guide.org/content/optimization-taxonomy

The NEOS Server

- The <u>NEOS Server</u> is a free internet-based service for solving numerical optimization problems.
- Hosted by the Wisconsin Institutes of Discovery at the University of Wisconsin in Madison.
- Provides access to more than 60 state-of-the-art solvers, both commercial and open source, in more than a dozen optimization categories.
- Offers a variety of interfaces for accessing the solvers, and jobs run on distributed high-performance machines enabled by the HTCondor software.

Concordia UNIVERSITY

44

Questions?

Don't forget to sign up as a member @ www.mtl-students.com

Be a part of our team and add volunteer experience to your CCR Email us at or.students.montreal@gmail.com or visit our website

Take advantage of our offer with Desjardins!

Thank you!