IBM Analytics

Pierre Bonami, Domenico Salvagnin, Andrea Tramontani CPLEX Optimization, IBM

CPLEX School – Montreal 2017

Optimization Problems

General (non-linear) program (NLP)

 $\begin{array}{ll} \max f(x) \\ \text{s.t.} \quad g_i(x) \leq 0, \quad \text{i} = 1, \dots, m \\ \quad x \in \mathbf{R}^n \text{ (and } x \in S) \end{array}$

Optimization Problems

General (non-linear) program (NLP)

max f(x)s.t. $g_i(x) \le 0$, i = 1, ..., m $x \in \mathbf{R}^n$ (and $x \in S$)

- What is S?
 - Mixed Integer program: $S = R^m \times Z^l$, i.e. some variables are integer

- Integer program: $S = Z^n$, i.e. all variables are integer

- Binary program: $S = \{0,1\}^n$, i.e. all variables are binary
- Continuous program: no S, i.e. all variable are continuous

Optimization Problems

General (non-linear) program (NLP)

 $\begin{array}{l} \max f(x) \\ \text{s.t.} \quad g_i(x) \leq 0, \quad \text{i} = 1, \dots, m \\ \quad x \in \mathbf{R}^n \text{ (and } x \in S) \end{array}$

- How are f and g_i?
 - Non-convex
 - Quadratic: QP / QCP
 - Convex
 - Quadratic: QP / QCP
 - Linear: LP

Optimization Solvers

- Different algorithms for different special cases
- Algorithms for more general case often employ special case as subroutine
- Evolution of solvers from special problem to more and more general problems

CPLEX Optimizer

- LP: simplex, barrier (crossover), shifting, network, concurrent
- Convex QP: simplex, barrier (crossover)
- Local Non-convex QP: Barrier (no crossover)
- Convex QCP/SOCP: barrier (no crossover)
- MILP:
 - Branch-and-cut/Dynamic search
 - Benders (MIP only)
- Convex MIQP: Branch-and-cut/Dynamic search
- Global Non-convex QP and MIQP: spatial branch-and-bound.
- MIQCP: Outer approximation, nonlinear branch-and-bound

	\		
		7	R