CPLEX School - Montreal 2017

Optimization Problems

- General (non-linear) program (NLP)

```
max f(x)
s.t. }\mp@subsup{g}{i}{\prime}(x)\leq0,\quad\textrm{i}=1,\ldots,\textrm{m
    x\in\mp@subsup{\mathbf{R}}{}{n}(\mathrm{ and }x\inS)
```


Optimization Problems

- General (non-linear) program (NLP)

```
max f(x)
s.t. }\mp@subsup{g}{i}{}(x)\leq0,\quad\textrm{i}=1,\ldots,\textrm{m
    x\in\mp@subsup{\mathbf{R}}{}{n}(\mathrm{ and }x\inS)
```

- What is S?
- Mixed Integer program: $S=\mathbf{R}^{m} \times \mathbf{Z}$, i.e. some variables are integer
- Integer program: $S=\mathbf{Z}^{n}, \quad$ i.e. all variables are integer
- Binary program: $S=\{0,1\}^{n}$,
i.e. all variables are binary
- Continuous program: no S, i.e. all variable are continuous

Optimization Problems

- General (non-linear) program (NLP)

```
max f(x)
s.t. }\mp@subsup{g}{i}{\prime}(x)\leq0,\quad\textrm{i}=1,\ldots,\textrm{m
    x\in\mp@subsup{\mathbf{R}}{}{\textrm{n}}(\mathrm{ and }x\inS)
```


- How are f and g_{i} ?
- Non-convex
- Quadratic: QP / QCP
- Convex
- Quadratic: QP / QCP
- Linear:

LP

Optimization Solvers

- Different algorithms for different special cases
- Algorithms for more general case often employ special case as subroutine
- Evolution of solvers from special problem to more and more general problems

CPLEX Optimizer

- LP: simplex, barrier (crossover), shifting, network, concurrent
- Convex QP: simplex, barrier (crossover)
- Local Non-convex QP: Barrier (no crossover)
- Convex QCP/SOCP: barrier (no crossover)

- MILP:
- Branch-and-cut/Dynamic search
- Benders (MIP only)
- Convex MIQP: Branch-and-cut/Dynamic search
- Global Non-convex QP and MIQP: spatial branch-and-bound.
- MIQCP: Outer approximation, nonlinear branch-and-bound

