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Introduction

@ A set of compiler directives and library routines for parallel application

programmers.

o Greatly simplifies writing Multi-Threaded programs.

@ Most of the constructs in OpenMP are compiler directives that start
with #pragma such that #pragma omp construct [clause [clause]].

e Example: #pragma omp parallel num_threads(4).

@ Function prototypes and types in the file : #include <omp.h>.
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Configuring Visual Studio for OpenMp

@ Open the project’s Property Pages dialog box.
@ Expand the Configuration Properties node.
@ Expand the C/C++ node.
@ Select the Language property page.
© Modify the OpenMP Support property.
Resource available online : https://computing.linl.gov/tutorials/openMP /

Resource is very precise and to the point. All the clauses, constructs that
we will not discuss today can be found in the documentaation.
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OpenMP Constructs

Parallel Construct
Loop construct
Sections Construct
Single Construct
Task Construct

Examples: See helloworld.c for parallel construct. See constructs.c for
loop, sections and single constructs.
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How do Threads Interact?

@ OpenMP is a multi-threading shared address model in which threads
communicate by sharing variables.

@ Unintended sharing of data causes race conditions: when the
programs outcome changes as the threads are scheduled differently.

@ To control race conditions: use synchronization to protect data
conflicts.

@ Synchronization is expensive thus, manipulate how the data is
accessed to minimize the need for synchronization.
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Creating Threads

@ Unless the number of threads is specified, compiler uses the max
number of threads specified.

@ Not safe to set the number of threads more than available amount.

e omp_get_num_procs() to obtain number of processors.
e omp_get_max_threads() to obtain the number of threads available.

e omp_set_num_threads(int) to set the number of threads used
throughout the program.

e omp_get_thread _num() can be called at any point in the program to
obtain the thread ID executing that specific chunk of code.
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Synchronization

Synchronization is used to impose order constraints and to protect access
to shared data.
@ High Level Synchronization
e critical
e atomical
o barrier
o ordered
@ Low Level Synchronization

o flush
o locks (simple and nested)
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Synchronization: Critical

@ One of the most commonly used constructs in OpenMP.

@ Mutual exclusion: Only one thread at a time can enter a critical
region.

o If a thread is currently executing inside a CRITICAL region and
another thread reaches that CRITICAL region and attempts to
execute it, it will be blocked until the first thread exits that
CRITICAL region.

o Critical region can contain anything, meaning that it can be formed of
several functions or it can simply be an operation on several variables.

Example: see synchronizationl.c
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Synchronization: Atomical

@ Atomic provides mutual exclusion but only applies to the update of a
memory location.

@ The statement under the directive can only be a single C assignment
statement such that: x++, ++x, x— or =x.

@ No other statement is allowed.

@ Can also be tackled by "reduction” clause.

Example: see synchronization2.c
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Synchronization: Barrier

@ The BARRIER directive synchronizes all threads in the team.

@ When a BARRIER directive is reached, a thread will wait at that
point until all other threads have reached that barrier. All threads
then resume executing in parallel the code that follows the barrier.

Example: see synchronization3.c
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The SPMD Pattern

The most common approach for parallel algorithms is the Single Program
Multiple Data pattern.

Each thread runs a single program, but using the thread ID, they operate

on different data (Multiple Data) or take slightly different paths through
the code.

In OpenMP this means:
@ A parallel region near the top of the code.
@ Pick up the thread ID and number of threads.

@ Use the thread ID and number of threads to split up loops and select
different data blocks to work on.

A better approach: Use the loop construct to share the workload in
between threads.

Example: pisequential.c, piparallell.c, piparallel2.c, piparallel3.c.
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Working with Loops

//SEQUETIAL

int i;

int j = 5;

int A[ND;

for (i=8; i=N; i++) {
i#=2;

Alil = BIil:}

£ FWRONG
int int;
int j = 5;
int A[ND;
#pragma omp parallel for
for (i = @; i=MN; i++) {//i is private by definition of omp parallel for
j+=2; ffi is loop dependent, meaning that it is shared between threads.

Alil = BIil:}

//REMOVE LOOP CARRIED DEPENDEMCE

int int;

int j = 5;

int A[ND;

#pragma omp parallel for

for (i = @; i=N; i++) {//i is private by definition of omp parallel for
int j = 5+2=1i; //j is private to every single thread.
Alil = BIlil;}
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Reduction

/S FSEQUENTTIAL

double average = @;

int AIN];

int i;

for (i=8; ieN; i++) {average += A[il;}
average = average/N;

S /WRONG PARALLEL
double average = @;
int AIND;
int i;
#pragma omp parallel for
for (i=@; i=N; i++) {average += A[i];}
[ /Note that variable 'average' is shared by all the threads in the loop
average = average/N;

//REDUCTION CLAUSE
double average = B;
int AIND;
int i;
#pragma omp parallel for reduction{+:average)
for (i=@; i<MN; i++) {average += A[i];}
S/ 'reduction clause takes an operand such as "+'"'-"'x' and makes a local copy of
/f'average"' wvariable and initializes depending on the operand
average = average/N;
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Private vs. Shared Variables

Any variable declared outside the parallel region is shared between the
threads inside the parallel region.

Example:Any variable declared outside can be manipulated by

'private’ and 'shared’ clauses

Int x,y;

#pragma omp parallel for private(x,y) shared(a,b)
for(i=0; i<N; i++){

read(a,b);

work(x,y);

#pragma omp critical{merge(x,y); }

}

@ Variable / is private by default.

@ a and b are shared because threads only read from it.

@ Since x and y are independent of the loop, they must be private and
then they must be merged with a critical in the end.
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Private vs. Shared Variables

A better and a safer way is to declare private variables inside the foor loop.
Especially if we are using complicated data structures that we update
many times inside the loop.

Example

#pragma omp parallel for

for(i=0; i<N; i++){

int X,y;

read(a,b);

work(x,y);

#pragma omp critical{merge(x,y); }}
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Private vs. Shared Variables
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Private vs. Shared Variables

A better and a safer way is to declare private variables inside the foor loop.
Especially if we are using complicated data structures that we update
many times inside the loop.

Example

#pragma omp parallel for

for(i=0; i<N; i++){

int X,y;

read(a,b);

work(x,y);

#pragma omp critical{merge(x,y); }}

How can we get rid of 'critical'? Answer: Very code specific. If it's a
simple (+,-,*) operand we can use reduction. However, if x and y are data
structures (arrays, matrices etc.), we must use either critical or we use one
of the techniques used in piparallell.c and piparallel2.c
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Computing 7 with a Dart Board

Throw darts at the square.

Chance of falling into circle is proportional to areas.
Ac = r? .

As = 4 x r2.

P=Ac/As =7/4.

Algorithm:

@ Randomly choose points in a 2-dimensional space.
@ Count the fraction that falls in the circle.
© Estimate 7.

Example: pirandomnumber.
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Matrix Multiplication

Example: See matrixmultiplyseq.c and matrixmultiply.c
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How Can We Profit from Parallelization in our Algorithms?

Branch-and-Bound:
© Parallelize the tree search (CPLEX already does this)

@ Instead of processing one node at a time, process as much as you can
by taking advantage of your computer structure.

© Critical value here is the upper bound, cause it might be updated by

several several threads at a time.
Column Generation:

@ Most Column Generation algorithms have decomposable subproblems.

@ Use this fact to deploy a parallel algorithm.

© Solve as many subproblems as possible instead of solving one at a
time.

© Be careful with shared information (such as dual values coming from
the master LP).
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How Can We Profit from Parallelization in our Algorithms?

Benders Decomposition:
@ Similar to CG, most Benders subproblems are decomposable.

@ Solve as many subproblems as possible by assigning each thread a
different subproblem.

Cutting Plane Algorithms:

© At a certain iteration of a Cutting Plane algorithm, there exists not
one but many valid inequalities that are violated by the current
solution.

@ Use this fact to derive several Vs instead of generating one at a time.

© Also, in many algorithms we have not one but several different
separation algorithms (to derive VIs) and one can parallelize the
algorithm such that certain threads will only execute certain
seperation procedures.
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And even Heuristics...
Neighborhood based Heuristics:

@ Single initial solution multiple neighborhoods - Parallelization in the
search.

@ Multiple initial solutions single neighborhood - Parallelization in the
initial solution scheme.

© Multiple initial solutions multiple neighborhoods - Parallelization in
both.

Operators used in population based Heuristics:
@ Selection
@ Crossover
© Mutation

@ Fitness-evaluation
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Any Questions?
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