Introduction to Parallel Computing with OpenMP

Furkan Enderer

Université de Montréal

frknndrr@gmail.com

June 28, 2016

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016

@ Introduction

© OpenMP Constructs

© Creating Threads

@ Synchronization

© SPMD vs Parallel Loops

@ Examples: Estimating m and Matrix Multiplication

@ How is Parallelization Useful for OR Practitioners?

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 2/22

Introduction

@ A set of compiler directives and library routines for parallel application

programmers.

o Greatly simplifies writing Multi-Threaded programs.

@ Most of the constructs in OpenMP are compiler directives that start
with #pragma such that #pragma omp construct [clause [clause]].

e Example: #pragma omp parallel num_threads(4).

@ Function prototypes and types in the file : #include <omp.h>.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 3/22

Configuring Visual Studio for OpenMp

@ Open the project’s Property Pages dialog box.
@ Expand the Configuration Properties node.
@ Expand the C/C++ node.
@ Select the Language property page.
© Modify the OpenMP Support property.
Resource available online : https://computing.linl.gov/tutorials/openMP /

Resource is very precise and to the point. All the clauses, constructs that
we will not discuss today can be found in the documentaation.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 4 /22

OpenMP Constructs

Parallel Construct
Loop construct
Sections Construct
Single Construct
Task Construct

Examples: See helloworld.c for parallel construct. See constructs.c for
loop, sections and single constructs.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 5/22

How do Threads Interact?

@ OpenMP is a multi-threading shared address model in which threads
communicate by sharing variables.

@ Unintended sharing of data causes race conditions: when the
programs outcome changes as the threads are scheduled differently.

@ To control race conditions: use synchronization to protect data
conflicts.

@ Synchronization is expensive thus, manipulate how the data is
accessed to minimize the need for synchronization.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 6 /22

Creating Threads

@ Unless the number of threads is specified, compiler uses the max
number of threads specified.

@ Not safe to set the number of threads more than available amount.

e omp_get_num_procs() to obtain number of processors.
e omp_get_max_threads() to obtain the number of threads available.

e omp_set_num_threads(int) to set the number of threads used
throughout the program.

e omp_get_thread _num() can be called at any point in the program to
obtain the thread ID executing that specific chunk of code.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 7/22

Synchronization

Synchronization is used to impose order constraints and to protect access
to shared data.
@ High Level Synchronization
e critical
e atomical
o barrier
o ordered
@ Low Level Synchronization

o flush
o locks (simple and nested)

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 8 /22

Synchronization: Critical

@ One of the most commonly used constructs in OpenMP.

@ Mutual exclusion: Only one thread at a time can enter a critical
region.

o If a thread is currently executing inside a CRITICAL region and
another thread reaches that CRITICAL region and attempts to
execute it, it will be blocked until the first thread exits that
CRITICAL region.

o Critical region can contain anything, meaning that it can be formed of
several functions or it can simply be an operation on several variables.

Example: see synchronizationl.c

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 9 /22

Synchronization: Atomical

@ Atomic provides mutual exclusion but only applies to the update of a
memory location.

@ The statement under the directive can only be a single C assignment
statement such that: x++, ++x, x— or =x.

@ No other statement is allowed.

@ Can also be tackled by "reduction” clause.

Example: see synchronization2.c

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 10 / 22

Synchronization: Barrier

@ The BARRIER directive synchronizes all threads in the team.

@ When a BARRIER directive is reached, a thread will wait at that
point until all other threads have reached that barrier. All threads
then resume executing in parallel the code that follows the barrier.

Example: see synchronization3.c

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 11 /22

The SPMD Pattern

The most common approach for parallel algorithms is the Single Program
Multiple Data pattern.

Each thread runs a single program, but using the thread ID, they operate

on different data (Multiple Data) or take slightly different paths through
the code.

In OpenMP this means:
@ A parallel region near the top of the code.
@ Pick up the thread ID and number of threads.

@ Use the thread ID and number of threads to split up loops and select
different data blocks to work on.

A better approach: Use the loop construct to share the workload in
between threads.

Example: pisequential.c, piparallell.c, piparallel2.c, piparallel3.c.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 12 / 22

Working with Loops

//SEQUETIAL

int i;

int j = 5;

int A[ND;

for (i=8; i=N; i++) {
i#=2;

Alil = BIil:}

£ FWRONG
int int;
int j = 5;
int A[ND;
#pragma omp parallel for
for (i = @; i=MN; i++) {//i is private by definition of omp parallel for
j+=2; ffi is loop dependent, meaning that it is shared between threads.

Alil = BIil:}

//REMOVE LOOP CARRIED DEPENDEMCE

int int;

int j = 5;

int A[ND;

#pragma omp parallel for

for (i = @; i=N; i++) {//i is private by definition of omp parallel for
int j = 5+2=1i; //j is private to every single thread.
Alil = BIlil;}

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 13 / 22

Reduction

/S FSEQUENTTIAL

double average = @;

int AIN];

int i;

for (i=8; ieN; i++) {average += A[il;}
average = average/N;

S /WRONG PARALLEL
double average = @;
int AIND;
int i;
#pragma omp parallel for
for (i=@; i=N; i++) {average += A[i];}
[/Note that variable 'average' is shared by all the threads in the loop
average = average/N;

//REDUCTION CLAUSE
double average = B;
int AIND;
int i;
#pragma omp parallel for reduction{+:average)
for (i=@; i<MN; i++) {average += A[i];}
S/ 'reduction clause takes an operand such as "+'"'-"'x' and makes a local copy of
/f'average"' wvariable and initializes depending on the operand
average = average/N;

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 14 / 22

Private vs. Shared Variables

Any variable declared outside the parallel region is shared between the
threads inside the parallel region.

Example:Any variable declared outside can be manipulated by

'private’ and 'shared’ clauses

Int x,y;

#pragma omp parallel for private(x,y) shared(a,b)
for(i=0; i<N; i++){

read(a,b);

work(x,y);

#pragma omp critical{merge(x,y); }

}

@ Variable / is private by default.

@ a and b are shared because threads only read from it.

@ Since x and y are independent of the loop, they must be private and
then they must be merged with a critical in the end.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 15 / 22

Private vs. Shared Variables

A better and a safer way is to declare private variables inside the foor loop.
Especially if we are using complicated data structures that we update
many times inside the loop.

Example

#pragma omp parallel for

for(i=0; i<N; i++){

int X,y;

read(a,b);

work(x,y);

#pragma omp critical{merge(x,y); }}

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 16 / 22

Private vs. Shared Variables

A better and a safer way is to declare private variables inside the foor loop.
Especially if we are using complicated data structures that we update
many times inside the loop.

Example

#pragma omp parallel for

for(i=0; i<N; i++){

int X,y;

read(a,b);

work(x,y);

#pragma omp critical{merge(x,y); }}

How can we get rid of 'critical'?

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 16 / 22

Private vs. Shared Variables

A better and a safer way is to declare private variables inside the foor loop.
Especially if we are using complicated data structures that we update
many times inside the loop.

Example

#pragma omp parallel for

for(i=0; i<N; i++){

int X,y;

read(a,b);

work(x,y);

#pragma omp critical{merge(x,y); }}

How can we get rid of 'critical'? Answer: Very code specific. If it's a
simple (+,-,*) operand we can use reduction.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 16 / 22

Private vs. Shared Variables

A better and a safer way is to declare private variables inside the foor loop.
Especially if we are using complicated data structures that we update
many times inside the loop.

Example

#pragma omp parallel for

for(i=0; i<N; i++){

int X,y;

read(a,b);

work(x,y);

#pragma omp critical{merge(x,y); }}

How can we get rid of 'critical'? Answer: Very code specific. If it's a
simple (+,-,*) operand we can use reduction. However, if x and y are data
structures (arrays, matrices etc.), we must use either critical or we use one
of the techniques used in piparallell.c and piparallel2.c

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 16 / 22

Computing 7 with a Dart Board

Throw darts at the square.

Chance of falling into circle is proportional to areas.
Ac = r? .

As = 4 x r2.

P=Ac/As =7/4.

Algorithm:

@ Randomly choose points in a 2-dimensional space.
@ Count the fraction that falls in the circle.
© Estimate 7.

Example: pirandomnumber.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 17 / 22

Matrix Multiplication

Example: See matrixmultiplyseq.c and matrixmultiply.c

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 18 / 22

How Can We Profit from Parallelization in our Algorithms?

Branch-and-Bound:
© Parallelize the tree search (CPLEX already does this)

@ Instead of processing one node at a time, process as much as you can
by taking advantage of your computer structure.

© Critical value here is the upper bound, cause it might be updated by

several several threads at a time.
Column Generation:

@ Most Column Generation algorithms have decomposable subproblems.

@ Use this fact to deploy a parallel algorithm.

© Solve as many subproblems as possible instead of solving one at a
time.

© Be careful with shared information (such as dual values coming from
the master LP).

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 19 / 22

How Can We Profit from Parallelization in our Algorithms?

Benders Decomposition:
@ Similar to CG, most Benders subproblems are decomposable.

@ Solve as many subproblems as possible by assigning each thread a
different subproblem.

Cutting Plane Algorithms:

© At a certain iteration of a Cutting Plane algorithm, there exists not
one but many valid inequalities that are violated by the current
solution.

@ Use this fact to derive several Vs instead of generating one at a time.

© Also, in many algorithms we have not one but several different
separation algorithms (to derive VIs) and one can parallelize the
algorithm such that certain threads will only execute certain
seperation procedures.

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 20 / 22

And even Heuristics...
Neighborhood based Heuristics:

@ Single initial solution multiple neighborhoods - Parallelization in the
search.

@ Multiple initial solutions single neighborhood - Parallelization in the
initial solution scheme.

© Multiple initial solutions multiple neighborhoods - Parallelization in
both.

Operators used in population based Heuristics:
@ Selection
@ Crossover
© Mutation

@ Fitness-evaluation

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 21 /22

Any Questions?

Furkan Enderer (UdeM) OpenMP Tutorial June 28, 2016 22 /22

	Introduction
	OpenMP Constructs
	Creating Threads
	Synchronization
	SPMD vs Parallel Loops
	Examples: Estimating and Matrix Multiplication
	How is Parallelization Useful for OR Practitioners?

