
© 2017 IBM Corporation

An Overview of CPLEX Mixed Integer

Linear Programming Branch-and-Cut
@CPLEX school 2017, Montreal

© 2017 IBM Corporation 2

Mixed Integer linear Programming

 A Mixed Integer (linear) Program (MIP) is a problem of the form

integer allor some

)(

 jx

uxl

bAxtoSubject

xczMinimizeMIP T







© 2017 IBM Corporation 3

Some MIP real-world applications

© 2017 IBM Corporation 4

z* = 5.2
Fathomed

Core of state of the art MIP solvers: LP-based Branch and Bound (B&B)

Root;

x1=3.5

x2=2.3

Integer

z = 7
x4=0.6

x3=0.3

Integer

z = 5

Infeas

x3=0.1

z* = 4.6
z* = 5.4
Fathomed

 B&B algorithm:

– Enumerative solution scheme based
on the LP relaxation of MIP

 Bounding:

– Nodes with z* > UB can be fathomed
without further ramification.

 Key points to avoid exponential explosion
of B&B tree:

– Strong LP relaxation

– Effective branching rules

– Primal heuristics

Upper Bound:

UB = 5

© 2017 IBM Corporation 5

Agenda

 Main building blocks of state of the art MIP solvers

 Presolve and probing

 Cutting planes

 Branching

 Primal heuristics

 Performance analysis

 Performance impact of main building blocks

© 2017 IBM Corporation 6

Presolve

 M.W.P. Savelsbergh, Preprocessing and probing techniques for mixed integer programming problems,
ORSA Journal of Computing 6, 445-454 (1994)

 Transform a problem P to a different but equivalent problem P’.

 Reduce problem size

• Speed-up linear algebra during the solution process

 Strengthen the LP relaxation

 Identify problem sub-structures

• Cliques, implications, networks, disconnected components, …

 Primal reductions

 Preserve the set of feasible solutions

 Bound strengthening, coefficient strengthening, lifting of constraints, aggregation of variables,
detection of implied integer variables and implied continuous variables, …

 Dual reductions

 Preserve optimality, but can eliminate feasible and even optimal solutions

 Dual fixings, fixing and aggregations based on symmetry, removal of parallel or dominated
columns, detection of implied integer variable, …

© 2017 IBM Corporation 7

Probing

 Tentatively set binary variable x to 0 and 1 and propagate fixing

 Inspect implications of x = 0 and x = 1 to derive globally valid information

 detection of infeasibility and global fixing of probing variable:

• x = 0 infeasible  x = 1

 global fixings and bound strengthening for implied variables:

• x = 0  y  u0, x = 1  y  u1  y  max{u0,u1}

 aggregations:

• x = 0  y = ly, x = 1  y = uy  y = ly + (uy – ly) x

 implications and cliques:

• x = 0  y  u0  store implication in implication (y non-binary) or clique (y binary) table

 lifting:

• ay  b, x = 1  ay  b – d  ay + dx  b is valid and dominates ay  b (for d > 0)

 Applied during and after presolve, during root cut loop, and in node presolve

 Can be very time consuming but also very powerful

 need to have good dynamically adjusted work limits

© 2017 IBM Corporation 8

Cutting planes

 Valid inequalities for the MIP that cut off integer
infeasible points of the LP relaxation

 Iteratively separated on the fly to strengthen the LP
relaxation

 Separated:

• At the root node (more aggressively)

• In the tree (less aggressively)

 Separation must be combined with clever cut
filtering and cut purging to avoid

• Numerical difficulties

• Node throughput slowdown

© 2017 IBM Corporation 9

x* := optimal solution of the LP relaxation

while (x* not integer and cuts seem effective) {

 heuristics, probing, other secret stuff;

 cut separation;

 cut selection/filtering;

 reoptimization;

 cut purging;

}

The root cut loop in CPLEX

 Cut separation

 Several families of cuts are separated at the same time.

 Cut filtering (inspired to Andreello et al., 2007)

 Only some of the separated cuts are selected and added to the current formulation:

• Efficacy

• Orthogonality

 Cut purging

 After reoptimization, some previously selected cuts may be deemed ineffective and may be discarded.

© 2017 IBM Corporation 10

Cutting planes overview

 General purpose cutting planes in CPLEX

 Gomory Mixed Integer (GMI) cuts

 Mixed Integer Rounding (MIR) cuts

 Lift and Project (L&P) cuts

 Zero-half cuts

 Flow cover cuts

 Structural cutting planes in CPLEX

 Knapsack cover cuts

 GUB cover cuts

 Clique cuts

 Implied bound cuts

 Multi Commodity Flow (MCF) cuts

 Flow path cuts

 Survey papers

 H. Marchand, A. Martin, R. Weismantel, L. Wolsey, Cutting planes in integer and mixed integer programming,
Discreate Applied Mathematics 123, 397-446, 2002

 G. Cornuéjols, Valid inequalities for mixed integer linear programs, Mathematical Programming 112, 3-44, 2008

© 2017 IBM Corporation 11

Separation of general purpose cutting planes

 Generate a base inequality by aggregating constraints of LP relaxation

 Apply rounding formulas to aggregated inequality to get a cut

 GMI cuts (Gomory, 1960)

 Base inequality readily available from the current tableau

 Resulting cut is violated by construction

 MIR cuts (Nemhauser & Wolsey, 1988)

 Base inequalities heuristically generated (CPLEX implementation inspired to Marchand & Wolsey, 2001)

 Resulting cut may be not violated

 L&P cuts (Balas, 1979, Balas et al., 1993)

 Solve Cut Generating LP (CGLP) to get a tableau different from the one readily available

 Separate a GMI cut from the different tableau

 Resulting cut is violated by construction is CGLP succeeds finding the alternative tableau

 CPLEX implementation inspired to Bonami (2012)

 They are “just” alternative strategies for separating split cuts (Cook et al., 1990)

 GMI closure = MIR closure = Split closure (see e.g., Nehmauser & Wolsey, 1990)

© 2017 IBM Corporation 12

Branching

 Divides the feasible region in a manner that all integer
feasible solutions belong to one of the branches

 Standard B&B:

• up and down branch on integer variables

 Branching on general disjunctions, e.g.:

• Owen & Mehrotra (2001)

• Mahajan & Ralphs (2009)

• Karamanov & Cornéjols (2011)

x ≤ floor(x*) x ≥ ceil(x*)

© 2017 IBM Corporation 13

A generic branching rule

 For each fractional variable x = x*, compute

 Down score D(x)

• impact of branching down on x ≤ floor(x*)

 Up score U(x)

• impact of branching up on x ≥ ceil(x*)

 Overall score S (x) = f (D(x), U(x))

 Variables with large score S (x) are good branching candidates

 What is an effective rule to compute down and up scores?

 Dual bound improvement

 Child node infeasible or cut-off

 Help propagation and bound tightening/fixing

 How to combine down and up score in a single magic number?

 S = min {D, U} + 𝜇 max {D,U}

 S = max {D, 𝜖} * max {U, 𝜖}

 More elaborated strategies very recently investigated:

• Le Bodic & Nemhauser (2015)

© 2017 IBM Corporation 14

Famous branching rules

 Strong branching (Applegate et al., 1995)

 Limited LP solve for each candidate variable

• For each fractional variable x = x*, tentatively branch down and up

• D(x) and U(x) are the improvement in the objective function

 Can lead to huge reduction in number of nodes

 But generally too expensive in practice (two limited LP solve for each candidate)

 Pseudo cost branching (Bénichou et al., 1971)

 Use historical data to predict impact of a branch

• Record ∆𝒐𝒃𝒋/∆𝒙 for each branch

• Maintain D(x) and U(x) as average of recorded values

© 2017 IBM Corporation 15

Famous branching rules

 Pseudo cost with strong branching initialization (Linderoth & Savelsbergh, 1999)

 If pseudo cost not available, initialize it with strong branching.

 Reliability branching (Achterberg et al., 2005)

 Consider pseudo costs on x reliable only if x has been branched on r times

• Among fractional variables, identify the ones with unreliable pseudo cost

• Apply strong branching to some (possibly, all) unreliable candidates to update their pseudo
cost and make them reliable

• Apply pseudo cost branching to all candidates with reliable pseudo cost

© 2017 IBM Corporation 16

 Default CPLEX strategy is similar to Hybrid branching (Achterberg and Berthold, 2009):

 Reliability branching

 Conflict scores

• Down and up score based on conflict table

• Idea: prefer branching candidates that are more likely to yield infeasible nodes after
branching.

 Pseudo reduced cost branching (similar to Patel and Chinneck, 2007)

• Estimate branching impact on the dual bound from the dual solution

 Inference scores

• Down and up scores based on clique table and implication table

• Idea: prefer branching candidates that allow more propagation

Branching in CPLEX

© 2017 IBM Corporation 17

Primal heuristics

 Starting heuristics

 Heuristics that do not need any LP solution available

• before LP heuristics, …

 Heuristics based on the current LP solution

• Diving heuristics

• Simulate depth-first-search with special branching strategy

• Propagate and resolve LP

• …

 Improving heuristics

 Heuristics that do not need any LP solution available

• Neighborood depends on incumbent solution only

 Heuristic based on the current LP solution

• E.g., RINS (Danna et al., 2005)

 Survey paper:

 M. Fischetti, A. Lodi, Heuristics in mixed integer programming, in J.J. Cochran (ed.) Wiley
Encyclopedia of Operations Research and Management Science, Vol. 8, pp. 738-747, Jonh Wiley &
sons, 2011

© 2017 IBM Corporation 18

In Summary

© 2017 IBM Corporation 19

Presolve

Cut loop

Separate

Resolve

Solve LP relaxation

Tree search

Thread 1

CPLEX parallel MIP Solver

© 2017 IBM Corporation 20

Other threads…

Presolve

Cut loops

Separate

Resolve

Solve LP relaxation : concurrent solver

Tree search

Heuristics

BeforeLP heur.

BeforeLP heuristics

Thread 1

Separate

Resolve

CPLEX parallel MIP Solver

© 2017 IBM Corporation 21

MIP Performance Analysis

© 2017 IBM Corporation 22

0

5

10

15

20

0

50

100

150

200

250

300

350

400

450

11.0
(2007)

12.1
(2009)

12.2
(2010)

12.4
(2011)

12.5.0
(2012)

12.6.0
(2013)

12.6.1
(2014)

12.6.3
(2015)

12.7.0
(2016)

12.7.1
(2017)

to
ta

l
s

p
e

e
d

u
p

n
u

m
b

e
r

o
f

ti
m

e
o

u
ts

CPLEX MILP performance evolution

 10 sec

 100 sec

 1000 sec

Date: 18 June 2017

Testset: MILP: 4009 models

Machine: Intel X5650 @ 2.67GHz, 24 GB RAM, 12 threads, deterministic

Timelimit: 10,000 sec

© 2017 IBM Corporation 23

 How important is each component?
Compare runs with feature turned on and off

– Solution time degradation (geometric mean)

– # of solved models

• Essential or just speedup?

– Number of affected models

• General of problem specific?

 Experiments conducted with CPLEX 12.5.0 (2012)

– Several features not available yet, e.g.,

• L&P cuts (added in CPLEX 12.5.1)

• Parallel cut loop (added in CPLEX 12.5.1)

 More detailed analysis in:
T. Achterberg and R. Wunderling, “Mixed Integer Programming: Analyzing 12 Years of Progress”, in:
Jünger and Reinelt (eds.) Facets of Combinatorial Optimization, Festschrift for Martin Grötschel,
pp.449-481, Springer, Berlin-Heidelberg (2013)

Main building blocks: Measuring performance impact

© 2017 IBM Corporation 24

Component Impact CPLEX 12.5.0 - Summary

Benchmarking setup

• 1769 models

• 12 core Intel Xenon 2.66 GHz

• Unbiased: At least one of all the

 test runs took at least 10sec

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected

© 2017 IBM Corporation 25

Component Impact CPLEX 12.5.0 - Summary

Fundamental Features

• Lots of models unsolvable

 without

• Apply to most models

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected

© 2017 IBM Corporation 26

Component Impact CPLEX 12.5.0 - Summary

Important Features

• Many models unsolvable

 without

• Apply to most models

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected

© 2017 IBM Corporation 27

Component Impact CPLEX 12.5.0 - Summary

Parallelism is not that important

• turning off == 12x fewer cycles

 i.e. just a tighter time limit

• Hardware cannot defeat

 combinatorial explosion

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected

© 2017 IBM Corporation 28

Component Impact CPLEX 12.5.0 - Summary

Special Features

• Few models unsolvable

 without

• Apply to few models

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected

© 2017 IBM Corporation 29

Component Impact CPLEX 12.5.0 - Summary

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected

© 2017 IBM Corporation 30

Component Impact CPLEX 12.5.0 – Presolve

6
.0

6

1
.7

7

1
.5

6

1
.2

4

1
.1

0

0

1

2

3

4

5

6

7

0

50

100

150

200

250

300

350

ti
m

e
 r
a
ti

o

a
d

d
it

io
n

a
l

ti
m

e
o

u
ts

© 2017 IBM Corporation 31

Component Impact CPLEX 12.5.0 - Summary

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected

© 2017 IBM Corporation 32

Component Impact CPLEX 12.5.0 – Cutting planes

© 2017 IBM Corporation 33

Component Impact CPLEX 12.5.0 - Summary

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected

© 2017 IBM Corporation 34

Component Impact CPLEX 12.5.0 – Primal heuristics

© 2017 IBM Corporation 35

Legal Disclaimer

• © IBM Corporation 2017. All Rights Reserved.

• The information contained in this publication is provided for informational purposes only. While efforts were made to verify the completeness and

accuracy of the information contained in this publication, it is provided AS IS without warranty of any kind, express or implied. In addition, this

information is based on IBM’s current product plans and strategy, which are subject to change by IBM without notice. IBM shall not be responsible

for any damages arising out of the use of, or otherwise related to, this publication or any other materials. Nothing contained in this publication is

intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and

conditions of the applicable license agreement governing the use of IBM software.

• References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.

Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market

opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in

these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales,

revenue growth or other results.

• Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or

performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming

in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an

individual user will achieve results similar to those stated here.

• Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

• Other company, product, or service names may be trademarks or service marks of others.

