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Mixed Integer linear Programming 

 A Mixed Integer (linear) Program (MIP) is a problem of the form 
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Some MIP real-world applications 
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Core of state of the art MIP solvers: LP-based Branch and Bound (B&B) 
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 B&B algorithm:  

– Enumerative solution scheme based 
on the LP relaxation of MIP 

 

 Bounding: 

– Nodes with z* > UB can be fathomed 
without further ramification. 

 

 Key points to avoid exponential explosion 
of B&B tree: 

– Strong LP relaxation 

– Effective branching rules 

– Primal heuristics 

Upper Bound:  

UB = 5 
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Agenda 

 Main building blocks of state of the art MIP solvers 

 Presolve and probing 

 Cutting planes 

 Branching 

 Primal heuristics 

 

 Performance analysis 

 Performance impact of main building blocks 
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Presolve 

 M.W.P. Savelsbergh, Preprocessing and probing techniques for mixed integer programming problems, 
ORSA Journal of  Computing 6, 445-454 (1994) 
 

 Transform a problem P to a different but equivalent problem P’.  

 Reduce problem size 

• Speed-up linear algebra during the solution process 

 Strengthen the LP relaxation 

 Identify problem sub-structures 

• Cliques, implications, networks, disconnected components, … 
 

 Primal reductions 

 Preserve the set of feasible solutions 

 Bound strengthening, coefficient strengthening, lifting of constraints, aggregation of variables, 
detection of implied integer variables and implied continuous variables, … 

 

 Dual reductions 

 Preserve optimality, but can eliminate feasible and even optimal solutions 

 Dual fixings, fixing and aggregations based on symmetry, removal of parallel or dominated 
columns, detection of implied integer variable, … 
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Probing 

 Tentatively set binary variable x to 0 and 1 and propagate fixing 
 

 Inspect implications of x = 0 and x = 1 to derive globally valid information 

 detection of infeasibility and global fixing of probing variable: 

• x = 0 infeasible    x = 1 

 global fixings and bound strengthening for implied variables: 

• x = 0  y  u0, x = 1  y  u1    y  max{u0,u1} 

 aggregations: 

• x = 0  y = ly, x = 1  y = uy    y = ly + (uy – ly) x 

 implications and cliques: 

• x = 0  y  u0    store implication in implication (y non-binary) or clique (y binary) table 

 lifting: 

• ay  b, x = 1  ay  b – d    ay + dx  b is valid and dominates ay  b (for d > 0) 
 

 Applied during and after presolve, during root cut loop, and in node presolve 
 

 Can be very time consuming but also very powerful 

 need to have good dynamically adjusted work limits 
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Cutting planes 

 Valid inequalities for the MIP that cut off integer 
infeasible points of the LP relaxation 

 

 Iteratively separated on the fly to strengthen the LP 
relaxation 

 

 Separated: 

• At the root node (more aggressively) 

• In the tree (less aggressively) 

 

 Separation must be combined with clever cut 
filtering and cut purging to avoid  

• Numerical difficulties 

• Node throughput slowdown 
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x* := optimal solution of the LP relaxation 

while (x* not integer and cuts seem effective) { 

 heuristics, probing, other secret stuff; 

 cut separation; 

 cut selection/filtering; 

 reoptimization; 

 cut purging; 

} 

The root cut loop in CPLEX 

 Cut separation 

 Several families of cuts are separated at the same time. 
 

 Cut filtering (inspired to Andreello et al., 2007) 

 Only some of the separated cuts are selected and added to the current formulation: 

• Efficacy  

• Orthogonality   
 

 Cut purging 

 After reoptimization, some previously selected cuts may be deemed ineffective and may be discarded. 



© 2017 IBM Corporation 10 

Cutting planes overview 

 General purpose cutting planes in CPLEX 

 Gomory Mixed Integer (GMI) cuts 

 Mixed Integer Rounding (MIR) cuts 

 Lift and Project (L&P) cuts 

 Zero-half cuts 

 Flow cover cuts 
 

 Structural cutting planes in CPLEX 

 Knapsack cover cuts 

 GUB cover cuts 

 Clique cuts 

 Implied bound cuts 

 Multi Commodity Flow (MCF) cuts 

 Flow path cuts 
 

 Survey papers 

 H. Marchand, A. Martin, R. Weismantel, L. Wolsey, Cutting planes in integer and mixed integer programming, 
Discreate Applied Mathematics 123, 397-446, 2002 

 G. Cornuéjols, Valid inequalities for mixed integer linear programs, Mathematical Programming 112, 3-44, 2008 
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Separation of general purpose cutting planes 

 Generate a base inequality by aggregating constraints of LP relaxation 
 

 Apply rounding formulas to aggregated inequality to get a cut 
 

 GMI cuts (Gomory, 1960) 

 Base inequality readily available from the current tableau 

 Resulting cut is violated by construction 
 

 MIR cuts (Nemhauser & Wolsey, 1988) 

 Base inequalities heuristically generated (CPLEX implementation inspired to Marchand & Wolsey, 2001) 

 Resulting cut may be not violated 
 

 L&P cuts (Balas, 1979, Balas et al., 1993) 

 Solve Cut Generating LP (CGLP) to get a tableau different from the one readily available 

 Separate a GMI cut from the different tableau 

 Resulting cut is violated by construction is CGLP succeeds finding the alternative tableau 

 CPLEX implementation inspired to Bonami (2012) 
 

 They are “just” alternative strategies for separating split cuts (Cook et al., 1990) 

 GMI closure = MIR closure = Split closure (see e.g., Nehmauser & Wolsey, 1990) 
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Branching 

 Divides the feasible region in a manner that all integer 
feasible solutions belong to one of the branches 
 

 Standard B&B:  

• up and down branch on integer variables 
 

 Branching on general disjunctions, e.g.: 

• Owen & Mehrotra (2001) 

• Mahajan & Ralphs (2009) 

• Karamanov & Cornéjols (2011) 

 

x ≤ floor(x*) x ≥ ceil(x*) 
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A generic branching rule 

 For each fractional variable x = x*, compute 

 Down score D(x) 

• impact of branching down on x ≤ floor(x*) 

 Up score U(x) 

• impact of branching up on x ≥ ceil(x*) 

 Overall score S (x) = f (D(x), U(x)) 

 Variables with large score S (x) are good branching candidates 
 

 What is an effective rule to compute down and up scores? 

 Dual bound improvement 

 Child node infeasible or cut-off 

 Help propagation and bound tightening/fixing 
 

 How to combine down and up score in a single magic number? 

 S = min {D, U} + 𝜇 max {D,U} 

 S = max {D, 𝜖} * max {U, 𝜖} 

 More elaborated strategies very recently investigated: 

• Le Bodic & Nemhauser (2015) 



© 2017 IBM Corporation 14 

Famous branching rules 

 Strong branching (Applegate et al., 1995) 

 Limited LP solve for each candidate variable 

• For each fractional variable x = x*, tentatively branch down and up 

• D(x) and U(x) are the improvement in the objective function 

 Can lead to huge reduction in number of nodes 

 But generally too expensive in practice (two limited LP solve for each candidate) 

 

 Pseudo cost branching (Bénichou et al., 1971) 

 Use historical data to predict impact of a branch 

• Record ∆𝒐𝒃𝒋/∆𝒙 for each branch  

• Maintain D(x) and U(x) as average of  recorded values 
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Famous branching rules 

 Pseudo cost with strong branching initialization (Linderoth & Savelsbergh, 1999) 

 If pseudo cost not available, initialize it with strong branching. 

 

 Reliability branching (Achterberg et al., 2005) 

 Consider pseudo costs on x reliable only if x has been branched on r times 

• Among fractional variables, identify the ones with unreliable pseudo cost 

• Apply strong branching to some (possibly, all) unreliable candidates to update their pseudo 
cost and make them reliable 

• Apply pseudo cost branching to all candidates with reliable pseudo cost 
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 Default CPLEX strategy is similar to Hybrid branching (Achterberg and Berthold, 2009): 

 Reliability branching 

 Conflict scores 

• Down and up score based on conflict table 

• Idea: prefer branching candidates that are more likely to yield infeasible nodes after 
branching. 

 Pseudo reduced cost branching (similar to Patel and Chinneck, 2007) 

• Estimate branching impact on the dual bound from the dual solution 

 Inference scores 

• Down and up scores based on clique table and implication table 

• Idea: prefer branching candidates that allow more propagation 

 

Branching in CPLEX 
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Primal heuristics 

 Starting heuristics 

 Heuristics that do not need any LP solution available 

• before LP heuristics, … 

 Heuristics based on the current LP solution 

• Diving heuristics 

• Simulate depth-first-search with special branching strategy 

• Propagate and resolve LP 

• … 
 

 Improving heuristics 

 Heuristics that do not need any LP solution available 

• Neighborood depends on incumbent solution only 

 Heuristic based on the current LP solution 

• E.g., RINS (Danna et al., 2005) 
 

 Survey paper: 

 M. Fischetti, A. Lodi, Heuristics in mixed integer programming, in J.J. Cochran (ed.) Wiley 
Encyclopedia of Operations Research and Management Science, Vol. 8, pp. 738-747, Jonh Wiley & 
sons, 2011 
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In Summary 
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Presolve 

Cut loop 

Separate 

Resolve 

Solve LP relaxation 

Tree search 

Thread 1 

CPLEX parallel MIP Solver 
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Other threads… 

Presolve 

Cut loops 

Separate 

Resolve 

Solve LP relaxation : concurrent solver 

Tree search 

Heuristics 

BeforeLP heur. 

BeforeLP heuristics 

Thread 1 

Separate 

Resolve 

CPLEX parallel MIP Solver 
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MIP Performance Analysis 
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CPLEX MILP performance evolution 

 10 sec 

 100 sec 

 1000 sec 

Date: 18 June 2017 

Testset:  MILP: 4009 models 

Machine: Intel X5650 @ 2.67GHz, 24 GB RAM, 12 threads, deterministic 

Timelimit: 10,000 sec 
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 How important is each component? 
Compare runs with feature turned on and off 

– Solution time degradation (geometric mean) 

– # of solved models 

• Essential or just speedup? 

– Number of affected models 

• General of problem specific? 

 

 Experiments conducted with CPLEX 12.5.0 (2012) 

– Several features not available yet, e.g., 

• L&P cuts (added in CPLEX 12.5.1) 

• Parallel cut loop (added in CPLEX 12.5.1) 

 

 More detailed analysis in: 
T. Achterberg and R. Wunderling, “Mixed Integer Programming: Analyzing 12 Years of Progress”, in: 
Jünger and Reinelt (eds.) Facets of Combinatorial Optimization, Festschrift for Martin Grötschel, 
pp.449-481, Springer, Berlin-Heidelberg (2013) 

Main building blocks: Measuring performance impact 
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Component Impact CPLEX 12.5.0 - Summary 

Benchmarking setup 
 

• 1769 models 

• 12 core Intel Xenon 2.66 GHz 

• Unbiased: At least one of all the 

  test runs took at least 10sec 

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected 
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Component Impact CPLEX 12.5.0 - Summary 

Fundamental Features 
  

• Lots of models unsolvable 

  without 

• Apply to most models 

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected 



© 2017 IBM Corporation 26 

Component Impact CPLEX 12.5.0 - Summary 

Important Features 
  

• Many models unsolvable 

  without 

• Apply to most models 

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected 
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Component Impact CPLEX 12.5.0 - Summary 

Parallelism is not that important 
 

• turning off == 12x fewer cycles 

  i.e. just a tighter time limit 

• Hardware cannot defeat 

  combinatorial explosion 

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected 
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Component Impact CPLEX 12.5.0 - Summary 

Special Features 
  

• Few models unsolvable 

  without 

• Apply to few models 
 

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected 
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Component Impact CPLEX 12.5.0 - Summary 

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected 
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Component Impact CPLEX 12.5.0 – Presolve 
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Component Impact CPLEX 12.5.0 - Summary 

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected 
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Component Impact CPLEX 12.5.0 – Cutting planes 
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Component Impact CPLEX 12.5.0 - Summary 

99% 82% 91% 26% 93% 91% 46% 83% 65% % affected 
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Component Impact CPLEX 12.5.0 – Primal heuristics 
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