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Facility Location Problems

� Location of the facilities

� Allocation of customers to open facilities

I Uncapacitated Facility

Location Problem (UFLP)

(Kuehn and Hamburger, 1963)

I p-Median Problem (p-MP)

(Hakimi, 1964)

I Uncapacitated p-Location

Problem (UpLP)

(Cornuéjols et al., 1977)

I Multi-level Uncapacitated Facility

Location Problem (MUFLP)

(Kaufman et al., 1977)

I Multi-level p-median Problem

(MpMP)

I Multi-level Uncapacitated

p-Location Problem (MUpLP)
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Definitions

I Set of customers I

I Sets of potential facil-
ities of levels 1 to k
(V1, · · · , Vk)

I Setup costs fjr for each
facility

I Allocation profits cij1···jk
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Definitions

I Set of customers I

I Sets of potential facil-
ities of levels 1 to k
(V1, · · · , Vk)

I Setup costs fjr for each
facility

I Allocation profits cij1···jk

The MUFLP consists of selecting a set of facilities to open at each
of the k levels and of assigning each customer to a set of facilities,
exactly one at each level, while maximizing the difference of the
total profit minus the setup cost for opening the facilities.
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Definitions

I Set of customers I

I Sets of potential facil-
ities of levels 1 to k
(V1, · · · , Vk)

I Setup costs fjr for each
facility

I Allocation profits cij1···jk
I A vector p = (p1 · · · , pk)

The MUpLP is defined as the MUFLP with the addition of sat-
isfying the cardinality constraints.

The MpMP is a particular case of MUpLP when all fjr are zero.
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Submodularity

Let N be a finite set and z be a real-valued function defined on
the set of subsets of N and ρe(W ) = z(W ∪ {e})− z(W ).

Definition

1. z is submodular if ρe(W ) ≥ ρe(U), ∀ W ⊆ U ⊆ N and
e ∈ N \ U .

2. z is nondecreasing if ρe(W ) ≥ ρe(U) ≥ 0, ∀ W ⊆ U ⊆ N
and e ∈ N .

12 / 29



Some results for single level FLPs
• Nemhauser et al. (1978) presented a greedy heuristic for

max
S⊆N
{z(S) : |S| ≤ p and z is submodular}. (1)

Proposition

If the greedy heuristic is applied to problem (1) then
Z − ZG

Z − z(∅)
≤ p− 1

p
and

Z − ZG

Z − z(∅) + pθ
≤
(
p− 1

p

)p

.

where, Z is the optimal value, ZG the value obtained by the
greedy heuristic and ρe(W ) ≥ θ for all W ⊆ N and e ∈ N\W .

When z is also nondecreasing, that is θ = 0 (e.g. p-MP)

Z − ZG

Z − z(∅)
≤
(
p− 1

p

)p

≤ 1/e,

and the bound is tight.
• MILP Formulations (Nemhauser and Wolsey, 1981)
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A Submodular Representation for the MUpLP

max
R⊆V

∑
i∈I

max
j1∈R1,··· ,jk∈Rk

cij1···jk −
k∑

r=1

∑
jr∈Rr

fjr : |Rr| ≤ pr


The above objective function does not satisfy submodularity.
Example Submodularity

Let Q be the set of all possible simple paths (j1, · · · , jk) and
N = Q ∪ V .

z(S,R) = h(S,R) + f(S,R) =
∑
i∈I

max
(j1,··· ,jk)∈S

cij1···jk −
k∑

r=1

∑
j∈Rr

fjr .

max
(S,R)⊆N

{z(S,R) : |Nr(S)| ≤ pr and Nr(S) = Rr ∀r} ,

where Nr(S) = {jr ∈ Vr : jr ∈ s for some s ∈ S} and z satis-
fies submodularity. However, in general, z is not nondecreasing.
(Ortiz-Astorquiza et al., 2015b)
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The Greedy Heuristic for the MUpLP

Let (S,R)0 ← ∅, N0 ← N and t← 1

while t < p1 + 1 do

Select Aq∗(t) ⊆ N t−1 for which
ρAq∗ (t)((S,R)t−1) = max

Aq(t)∈Nt−1
ρAq(t)((S,R)t−1) with ties broken

arbitrarily. Set ρt−1 ← ρAq∗ (t)((S,R)t−1)
if ρt−1 ≤ 0 then

Stop with (S,R)t−1 as the greedy solution
else

Set (S,R)t ← (S,R)t−1 ∪Aq∗(t) and N t ← N t−1 \Aq∗(t)
end if
for r such that |Nr(St)| = pr do

Set N t ← N t \ {q : ∃jr ∈ Vr \Rt
r}

end for
t← t+ 1

end while
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Worst-case bounds for greedy heuristics

Under the assumption that cij1···jk = cij1 + · · ·+ cjk−1jk ≥ 0.

Proposition

If the greedy heuristic for the MUpLP terminates after t∗

iterations,

Z − ZG

Z − z(∅) + p1θ
≤ t∗

p1

(
p1 − 1

p1

)p1

≤
(
p1 − 1

p1

)p1

≤ 1/e.

Proposition

If the greedy heuristic is applied to MpMP, then

H −HG

H
≤
(
p1 − 1

p1

)p1

≤ 1/e,

and the bound is tight.

This work was submitted for publication (Ortiz-Astorquiza et al., 2015a) 20 / 29



A Submodular MILP Formulation
Let xq be 1 if path q ∈ Q is open and yjr be 1 if facility jr ∈ Vr
is open, 0 otherwise. The MUpLP can be formulated as

(SF) max η −
k∑

r=1

∑
jr∈Vr

fjryjr

s.t. η ≤ h(S) +
∑

q∈Q\S

ρq(S)xq S ⊆ Q (2)

∑
q∈Q:jr∈q

xq ≤Mryjr jr ∈ Vr, r = 1, · · · , k (3)

∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k (4)

xq ∈ {0, 1} q ∈ Q (5)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k, (6)

where, Mr = min{p1, |Q|/Vr} are sufficiently large values for
r = 1, · · · , k.
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A Submodular MILP Formulation

Constraints (2) can be written as

ηi ≤ ciqt +
∑
q∈Q

(ciq − ciqt)+xq i ∈ I, t = 0, · · · .|Q| − 1,

And since we assumed that cij1···jk = cij1 + · · ·+ cjk−1jk ≥ 0, we
can add the valid cut ∑

q∈Q
xq ≤ p1.
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Computational Results
Using CPLEX 12.6.1 we compare the submodular formulations for the
MpMP and for the MUpLP with three previously presented formu-
lations. A Path-based formulation (PBF, Aardal et al., 1999), an
Arc-based formulation (ABF, Aardal et al., 1996; Gabor and Om-
meren, 2010) and a Flow-based formulation (FBF, Kratica et al., 2014).
Other Formulations

SGM SGM Avg.
k = 2 k = 3 k = 4 |I| = 500 |I|=1,000 |I|=1,500 |I|=2,000 cap Total sec nodes %gap

SFD 36/39 22/25 12/12 16/16 37/37 12/16 2/4 21/21 70/76 3.46 13.44 1.24
FBF 28/39 18/25 11/12 13/16 33/37 6/16 2/4 21/21 57/76 10.54 13.70 3.19
ARB 28/39 14/25 6/12 13/16 27/37 4/16 1/4 19/21 48/76 46.91 0.14 0.01
PBF 35/39 8/25 0/12 8/16 24/37 6/16 2/4 15/21 43/76 - - -

Greedy 17/39 8/25 6/12 6/16 20/37 4/16 1/4 11/21 31/76 0.00 - 1.33

Table : Summary of the computational results for the MpMP.

SGM SGM Avg.
k = 2 k = 3 k = 4 |I| = 500 |I|=1,000 |I|=1,500 |I|=2000 cap MUFLP Total sec nodes %gap

SFML 29/36 15/25 9/12 12/16 31/37 9/16 1/4 16/21 10/20 53/73 68.84 440.64 4.41
FBF 18/36 14/25 8/12 13/16 29/37 2/16 0/4 21/21 14/20 44/73 91.70 103.2 7.76
ARB 25/36 16/25 5/12 13/16 29/37 4/16 1/4 21/21 20/20 47/73 79.64 0.37 0.01
PBF 28/36 6/25 0/12 7/16 23/37 4/16 0/4 15/21 12/20 34/73 - - -

Greedy 1/36 0/25 0/12 0/16 1/37 0/16 0/4 0/21 0/20 2/73 0.00 - 5.88

Table : Summary of the Computational Results for the MUpLP.
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Aardal, K., Labbé, M., Leung, J., and Queyranne, M. (1996). On the
two-level uncapacitated facility location problem. INFORMS
Journal on Computing, 8(3):289–301.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network
flows: theory, algorithms, and applications. Prentice Hall,
Englewood Cliffs, New Jersey.
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Appendix

Greedy

Submodular Formulations
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Example

c 12 22
11 1 1
21 100 1

(a) T = {11, 12, 22} and S = {11, 22} (b) T ∪ {21} and S ∪ {21}

Vertex representation of the MUFLP

v(T ) = 1, v(T ∪ {21}) = 100 and ρ21(T ) = 99
v(S) = 1, v(S ∪ {21}) = 1 and ρ21(S) = 0.
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(a) (b) (c)

Path-allocation representation of the MUFLP

(a) T = {(11, 12), (11, 22)} and S = {(11, 22)}
(b) T = {(11, 12), (11, 22), (21, 12)} and S = {(11, 22), (21, 12)}
(c) T = {(11, 12), (11, 22), (21, 22)} and S = {(11, 22), (21, 22)}
back
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Proposition

The greedy heuristic for the MUpLP can be executed in
O (p1|V1| (|V | log |V |+ E + |I|)) time.

Proof: At iteration t the subset Aq∗(t) ⊆ N t−1 can be efficiently
identified by solving a series of shortest path problems as follows. We
consider the auxiliary directed graph Gt = (V t, At), where
At =

{
(i, j) : i ∈ V t

r , j ∈ V t
r+1, r = 1, . . . , k − 1

}
. For each a ∈ At, we

define its length as wjrjr+1
= fjr+1

− cjrjr+1
if jr+1 /∈ Rt and

wjrjr+1 = −cjrjr+1 if jr+1 ∈ Rt. This operation takes O(|E|) time. We
then compute a candidate path q, and its associated subset Aq(t),
associated with each facility j ∈ V1 \Rt

1 by solving a shortest path
problem between j and all nodes in Vk. This can be done in
O(|V | log |V |+ |E|) time using the Fibonacci heap implementation of
Dijkstra’s algorithm (Ahuja et al., 1993). Finally, we evaluate
ρAq(t)((S,R)t−1) for each candidate path q. This takes O(|I|) time.
Therefore, each iteration of the algorithm takes a total of
O(|V1| (|V | log |V |+ E + |I|)) time. Given that there are at most p1
iterations in the algorithm, the result follows.
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Property 1:

Under Assumption 1, there exists an optimal solution to the
MUpLP in which every open facility at level r is assigned to
exactly one facility at level r + 1, for r = 1, . . . , k (i.e. coherent
structure).

Property 2:

Under Assumption 1, there exists an optimal solution to the
MUpLP in which at most p1 paths are used, i.e. |S| ≤ p1.
back
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Consider the polyhedron X defined as

{(η, x, y1, · · · , yk) : η ≤ h(S) +
∑

q∈Q\S

ρq(S)xq, ∀S ⊆ Q,

x ∈ {0, 1}|Q|, yr ∈ {0, 1}|Vr|, η ∈ R},

where the binary variables xq can be interpreted as xq = 1 if the
path q ∈ Q is open and 0 otherwise, and yr corresponds to the
incidence vector for each level r of the facilities that are open.

Proposition

Let T ⊆ Q, Nr(T ) ⊆ Vr for all r, and (η, xT , yT1 , · · · , yTk ) where
xT , yT1 , · · · , yTk are the incidence vectors of T and Nr(T ),
respectively. Then, (η, xT , yT1 , · · · , yTk ) ∈ X if and only if
η ≤ h(T ).

back
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Also, note that since h(S) is the sum of |I| submodular set functions,
one for each i ∈ I, we can replace the objective function η by

∑
i∈I η

i

and constraints (2) with

ηi ≤ hi(S) +
∑

q∈Q\S

ρiq(S)xq i ∈ I, S ⊆ Q, (7)

where ρiq(S) = hi(S ∪ {q}) − hi(S). Moreover, most of these inequal-
ities are redundant. First, note that for S ⊆ Q and i ∈ I given, the
right-hand side of their associated constraint (7) does not change if the
summation is taken over all q ∈ Q, since ρiq(S) = 0 for q ∈ S. Also,

hi(S) = cis1,··· ,sk for some s1, · · · , sk ∈ S. For simplicity, we write cis
for s ∈ S ⊆ Q. Then, ρiq(S) = ciq − cis if ciq > cis or ρiq(S) = 0 if
ciq ≤ cis. For any S, its associated constraint (7) can thus be written
as

ηi ≤ cis +
∑
q∈Q

(ciq − cis)+xq,

for some s ∈ S and χ+ = max {0, χ}. Therefore, if for each i ∈ I we
consider the ordering 0 = ciq0 ≤ ciq1 ≤ · · · ≤ ciq|Q| , we may select only
the sets Sq = {q} with q = q0, · · · , q|Q|−1 in constraints (7).
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Proposition

The MpMP can be formulated as

maximize
∑
i∈I

ηi

subject to (3)− (6)

ηi ≤ ciqt +
∑
q∈Q

(ciq − ciqt)+xq i ∈ I, t = 0, · · · , |Q| − 1.(8)

Proof:
Since constraints (8) are a subset of constraints (2), we only need to

show that if (ζ, xT , yT ) does not satisfy constraints (2) (i.e ζ > hî(T )
for some î, by Proposition 3.2) for a given T ⊆ Q, then (ζ, xT , yT ) is
also infeasible with respect to constraints (8). Thus, suppose

hî(T ) = maxq∈T ciq = cîqt , then the associated tth inequality (8)
would be

ζ ≤ cîqt−1
+
∑
q∈Q

(cîq − cîqt−1
)+xTq = cîqt−1

+ cîqt − cîqt−1
= cîqt = hî(T ),

which contradicts ζ > hî(T ) and the result follows. 37 / 29



A Path-based Formulation

(PBF) max
∑
i∈I

∑
q∈Q

ciqxiq −
k∑

r=1

∑
jr∈Vr

fjryjr

s. t.
∑
q∈Q

xiq = 1 i ∈ I

∑
q∈Q:jr∈q

xiq ≤ yjr i ∈ I, jr ∈ Vr, r = 1, · · · , k

∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k

xiq ≥ 0 i ∈ I, q ∈ Q
yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k.

back

(Aardal et al., 1999)
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An Arc-based Formulation

(ABF) maximize
∑
i∈I

∑
j1∈V1

cij1xij1 +
∑
i∈I

k−1∑
r=1

∑
(a,b)∈Vr×Vr+1

cabziab −
k∑

r=1

∑
jr∈Vr

fjryjr

subject to
∑

j1∈V1

xij1 = 1 i ∈ I

∑
b∈V2

ziab = xia i ∈ I, a ∈ V1∑
b∈Vr+1

ziab =
∑

b′∈Vr−1

zib′a i ∈ I, a ∈ V1, r = 2, · · · , k − 1

xij1 ≤ yj1 i ∈ I, j1 ∈ V1∑
a∈Vr−1

ziab ≤ yb i ∈ I, b ∈ Vr r = 2, · · · , k

∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k

xij1 ≥ 0 , ziab ≥ 0 i ∈ I, j1 ∈ V1, (a, b) ∈ Vr × Vr+1

yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k.

(Aardal et al., 1996; Gabor and Ommeren, 2010) 39 / 29



A Flow-based Formulation

(FBF) maximize
k∑

r=1

∑
a∈Vr+1

∑
b∈Vr

cabzabr −
k∑

r=1

∑
jr∈Vr

fjryjr

subject to
∑
b∈V1

zab0 = 1 a ∈ I

∑
b∈Vr−1

zabr−1 =
∑

b∈Vr+1

zbar a ∈ Vr, r = 1, · · · , k − 1

zabr ≤ myb a ∈ Vr+1, b ∈ Vr r = 1, · · · , k∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k

zijr ≥ 0 i ∈ Vr+1, j ∈ Vr, r = 0, · · · , k
yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k.

(Kratica et al., 2014)
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