Formulations and Approximation Algorithms for Multi-level Facility Location Problems

Camilo Ortiz-Astorquiza ${ }^{1}$ Ivan Contreras ${ }^{1}$ Gilbert Laporte ${ }^{2}$
${ }^{1}$ Concordia University, Montreal - CIRRELT.
${ }^{2}$ HEC, Montreal -CIRRELT.

$$
\text { May } 2016
$$

Outline

Introduction

Classes of Problems
 Submodularity

Main Results
Approximation Algorithms
MILP Formulation
Computational Results

Facility Location Problems
\diamond Location of the facilities
\diamond Allocation of customers to open facilities

Facility Location Problems
\diamond Location of the facilities
\diamond Allocation of customers to open facilities

- Uncapacitated Facility

Location Problem (UFLP)
(Kuehn and Hamburger, 1963)

- p-Median Problem (p-MP)
(Hakimi, 1964)
- Uncapacitated p-Location

Problem (UpLP)
(Cornuéjols et al., 1977)

Facility Location Problems
\diamond Location of the facilities
\diamond Allocation of customers to open facilities

- Uncapacitated Facility Location Problem (UFLP)
(Kuehn and Hamburger, 1963)
- p-Median Problem (p-MP) (Hakimi, 1964)
- Uncapacitated p-Location Problem (UpLP)
(Cornuéjols et al., 1977)
- Multi-level Uncapacitated Facility Location Problem (MUFLP)
(Kaufman et al., 1977)

Facility Location Problems
\diamond Location of the facilities
\diamond Allocation of customers to open facilities

- Uncapacitated Facility Location Problem (UFLP)
(Kuehn and Hamburger, 1963)
- p-Median Problem (p-MP) (Hakimi, 1964)
- Uncapacitated p-Location Problem (UpLP)
(Cornuéjols et al., 1977)
- Multi-level Uncapacitated Facility Location Problem (MUFLP)
(Kaufman et al., 1977)
- Multi-level p-median Problem ($\mathrm{M} p \mathrm{MP}$)
- Multi-level Uncapacitated p-Location Problem (MUpLP)

Definitions

- Set of customers I
- Sets of potential facilities of levels 1 to k $\left(V_{1}, \cdots, V_{k}\right)$

- Allocation profits $c_{i j_{1} \cdots j_{k}}$

Definitions

- Set of customers I
- Sets of potential facilities of levels 1 to k $\left(V_{1}, \cdots, V_{k}\right)$
- Setup costs $f_{j_{r}}$ for each facility
- Allocation profits $c_{i j_{1} \cdots j_{k}}$

Definitions

- Set of customers I
- Sets of potential facilities of levels 1 to k $\left(V_{1}, \cdots, V_{k}\right)$
- Setup costs $f_{j_{r}}$ for each facility
- Allocation profits $c_{i j_{1} \cdots j_{k}}$

The MUFLP consists of selecting a set of facilities to open at each of the k levels and of assigning each customer to a set of facilities, exactly one at each level, while maximizing the difference of the total profit minus the setup cost for opening the facilities.

Definitions

- Set of customers I
- Sets of potential facilities of levels 1 to k $\left(V_{1}, \cdots, V_{k}\right)$
- Setup costs $f_{j_{r}}$ for each facility
- Allocation profits $c_{i j_{1} \cdots j_{k}}$
- A vector $p=\left(p_{1} \cdots, p_{k}\right)$

The MUpLP is defined as the MUFLP with the addition of satisfying the cardinality constraints.

Definitions

- Set of customers I
- Sets of potential facilities of levels 1 to k $\left(V_{1}, \cdots, V_{k}\right)$
- Setup costs $f_{j_{r}}$ for each facility
- Allocation profits $c_{i j_{1} \cdots j_{k}}$
- A vector $p=\left(p_{1} \cdots, p_{k}\right)$

The MUpLP is defined as the MUFLP with the addition of satisfying the cardinality constraints.
The $\mathrm{M} p \mathrm{MP}$ is a particular case of $\mathrm{MU} p \mathrm{LP}$ when all $f_{j_{r}}$ are zero.

Submodularity

Let N be a finite set and z be a real-valued function defined on the set of subsets of N and $\rho_{e}(W)=z(W \cup\{e\})-z(W)$.

Definition

1. z is submodular if $\rho_{e}(W) \geq \rho_{e}(U), \quad \forall W \subseteq U \subseteq N$ and $e \in N \backslash U$.
2. z is nondecreasing if $\rho_{e}(W) \geq \rho_{e}(U) \geq 0, \quad \forall W \subseteq U \subseteq N$ and $e \in N$.

Some results for single level FLPs

- Nemhauser et al. (1978) presented a greedy heuristic for

$$
\begin{equation*}
\max _{S \subseteq N}\{z(S):|S| \leq p \text { and } z \text { is submodular }\} \tag{1}
\end{equation*}
$$

Proposition

If the greedy heuristic is applied to problem (1) then $\frac{Z-Z^{G}}{Z-z(\emptyset)} \leq \frac{p-1}{p}$ and $\frac{Z-Z^{G}}{Z-z(\emptyset)+p \theta} \leq\left(\frac{p-1}{p}\right)^{p}$.
where, Z is the optimal value, Z^{G} the value obtained by the greedy heuristic and $\rho_{e}(W) \geq \theta$ for all $W \subseteq N$ and $e \in N \backslash W$.

Some results for single level FLPs

- Nemhauser et al. (1978) presented a greedy heuristic for

$$
\begin{equation*}
\max _{S \subseteq N}\{z(S):|S| \leq p \text { and } z \text { is submodular }\} . \tag{1}
\end{equation*}
$$

Proposition

If the greedy heuristic is applied to problem (1) then
$\frac{Z-Z^{G}}{Z-z(\emptyset)} \leq \frac{p-1}{p}$ and $\frac{Z-Z^{G}}{Z-z(\emptyset)+p \theta} \leq\left(\frac{p-1}{p}\right)^{p}$.
where, Z is the optimal value, Z^{G} the value obtained by the greedy heuristic and $\rho_{e}(W) \geq \theta$ for all $W \subseteq N$ and $e \in N \backslash W$.

When z is also nondecreasing, that is $\theta=0$ (e.g. p-MP)

$$
\frac{Z-Z^{G}}{Z-z(\emptyset)} \leq\left(\frac{p-1}{p}\right)^{p} \leq 1 / e
$$

and the bound is tight.

Some results for single level FLPs

- Nemhauser et al. (1978) presented a greedy heuristic for

$$
\begin{equation*}
\max _{S \subseteq N}\{z(S):|S| \leq p \text { and } z \text { is submodular }\} . \tag{1}
\end{equation*}
$$

Proposition

If the greedy heuristic is applied to problem (1) then
$\frac{Z-Z^{G}}{Z-z(\emptyset)} \leq \frac{p-1}{p}$ and $\frac{Z-Z^{G}}{Z-z(\emptyset)+p \theta} \leq\left(\frac{p-1}{p}\right)^{p}$.
where, Z is the optimal value, Z^{G} the value obtained by the greedy heuristic and $\rho_{e}(W) \geq \theta$ for all $W \subseteq N$ and $e \in N \backslash W$.

When z is also nondecreasing, that is $\theta=0$ (e.g. p-MP)

$$
\frac{Z-Z^{G}}{Z-z(\emptyset)} \leq\left(\frac{p-1}{p}\right)^{p} \leq 1 / e
$$

and the bound is tight.

- MILP Formulations (Nemhauser and Wolsey, 1981)

A Submodular Representation for the MUpLP

$$
\max _{R \subseteq V}\left\{\sum_{i \in I} \max _{j_{1} \in R_{1}, \cdots, j_{k} \in R_{k}} c_{i j_{1} \cdots j_{k}}-\sum_{r=1}^{k} \sum_{j_{r} \in R_{r}} f_{j_{r}}:\left|R_{r}\right| \leq p_{r}\right\}
$$

The above objective function does not satisfy submodularity.

A Submodular Representation for the MUpLP

$$
\max _{R \subseteq V}\left\{\sum_{i \in I} \max _{j_{1} \in R_{1}, \cdots, j_{k} \in R_{k}} c_{i j_{1} \cdots j_{k}}-\sum_{r=1}^{k} \sum_{j_{r} \in R_{r}} f_{j_{r}}:\left|R_{r}\right| \leq p_{r}\right\}
$$

The above objective function does not satisfy submodularity.

Example Submodularity

Let Q be the set of all possible simple paths $\left(j_{1}, \cdots, j_{k}\right)$ and $N=Q \cup V$.
$z(S, R)=h(S, R)+f(S, R)=\sum_{i \in I} \max _{\left(j_{1}, \cdots, j_{k}\right) \in S} c_{i j_{1} \cdots j_{k}}-\sum_{r=1}^{k} \sum_{j \in R_{r}} f_{j_{r}}$.

A Submodular Representation for the MUpLP

$$
\max _{R \subseteq V}\left\{\sum_{i \in I} \max _{j_{1} \in R_{1}, \cdots, j_{k} \in R_{k}} c_{i j_{1} \cdots j_{k}}-\sum_{r=1}^{k} \sum_{j_{r} \in R_{r}} f_{j_{r}}:\left|R_{r}\right| \leq p_{r}\right\}
$$

The above objective function does not satisfy submodularity.
Example Submodularity
Let Q be the set of all possible simple paths $\left(j_{1}, \cdots, j_{k}\right)$ and $N=Q \cup V$.
$z(S, R)=h(S, R)+f(S, R)=\sum_{i \in I} \max _{\left(j_{1}, \cdots, j_{k}\right) \in S} c_{i j_{1} \cdots j_{k}}-\sum_{r=1}^{k} \sum_{j \in R_{r}} f_{j_{r}}$.

$$
\max _{(S, R) \subseteq N}\left\{z(S, R):\left|N_{r}(S)\right| \leq p_{r} \text { and } N_{r}(S)=R_{r} \forall r\right\}
$$

where $N_{r}(S)=\left\{j_{r} \in V_{r}: j_{r} \in s\right.$ for some $\left.s \in S\right\}$ and z satisfies submodularity. However, in general, z is not nondecreasing. (Ortiz-Astorquiza et al., 2015b)

The Greedy Heuristic for the MUpLP

Let $(S, R)^{0} \leftarrow \emptyset, N^{0} \leftarrow N$ and $t \leftarrow 1$
while $t<p_{1}+1$ do
Select $A_{q^{*}}(t) \subseteq N^{t-1}$ for which
$\rho_{A_{q^{*}}(t)}\left((S, R)^{t-1}\right)=\max _{A_{q}(t) \in N^{t-1}} \rho_{A_{q}(t)}\left((S, R)^{t-1}\right)$ with ties broken
arbitrarily. Set $\rho_{t-1} \leftarrow \rho_{A_{q^{*}}(t)}\left((S, R)^{t-1}\right)$
if $\rho_{t-1} \leq 0$ then
Stop with $(S, R)^{t-1}$ as the greedy solution
else
Set $(S, R)^{t} \leftarrow(S, R)^{t-1} \cup A_{q^{*}}(t)$ and $N^{t} \leftarrow N^{t-1} \backslash A_{q^{*}}(t)$
end if
for r such that $\left|N_{r}\left(S^{t}\right)\right|=p_{r}$ do
Set $N^{t} \leftarrow N^{t} \backslash\left\{q: \exists j_{r} \in V_{r} \backslash R_{r}^{t}\right\}$
end for
$t \leftarrow t+1$
end while

Worst-case bounds for greedy heuristics

Under the assumption that $c_{i j_{1} \cdots j_{k}}=c_{i j_{1}}+\cdots+c_{j_{k-1} j_{k}} \geq 0$.

Proposition

If the greedy heuristic for the MUpLP terminates after t^{*} iterations,

$$
\frac{Z-Z^{G}}{Z-z(\emptyset)+p_{1} \theta} \leq \frac{t^{*}}{p_{1}}\left(\frac{p_{1}-1}{p_{1}}\right)^{p_{1}} \leq\left(\frac{p_{1}-1}{p_{1}}\right)^{p_{1}} \leq 1 / e
$$

Proposition

If the greedy heuristic is applied to $M p M P$, then

$$
\frac{H-H^{G}}{H} \leq\left(\frac{p_{1}-1}{p_{1}}\right)^{p_{1}} \leq 1 / e
$$

and the bound is tight.

A Submodular MILP Formulation

Let x_{q} be 1 if path $q \in Q$ is open and $y_{j_{r}}$ be 1 if facility $j_{r} \in V_{r}$ is open, 0 otherwise. The MUpLP can be formulated as

$$
\begin{align*}
\text { (SF) } \max & \eta-\sum_{r=1}^{k} \sum_{j_{r} \in V_{r}} f_{j_{r}} y_{j_{r}} \\
\text { s.t. } & \eta \leq h(S)+\sum_{q \in Q \backslash S} \rho_{q}(S) x_{q} \quad S \subseteq Q \tag{2}\\
& \sum_{q \in Q: j_{r} \in q} x_{q} \leq M_{r} y_{j_{r}} \quad j_{r} \in V_{r}, r=1, \cdots, k \tag{3}\\
& \sum_{j_{r} \in V_{r}} y_{j_{r}} \leq p_{r} \quad r=1, \cdots, k \tag{4}\\
& x_{q} \in\{0,1\} \quad q \in Q \tag{5}\\
& y_{j_{r}} \in\{0,1\} \quad j_{r} \in V_{r}, \quad r=1, \cdots, k, \tag{6}
\end{align*}
$$

where, $M_{r}=\min \left\{p_{1},|Q| / V_{r}\right\}$ are sufficiently large values for $r=1, \cdots, k$.

A Submodular MILP Formulation

Constraints (2) can be written as

$$
\eta^{i} \leq c_{i q_{t}}+\sum_{q \in Q}\left(c_{i q}-c_{i q_{t}}\right)^{+} x_{q} \quad i \in I, \quad t=0, \cdots .|Q|-1,
$$

A Submodular MILP Formulation

Constraints (2) can be written as

$$
\eta^{i} \leq c_{i q_{t}}+\sum_{q \in Q}\left(c_{i q}-c_{i q_{t}}\right)^{+} x_{q} \quad i \in I, \quad t=0, \cdots .|Q|-1,
$$

And since we assumed that $c_{i j_{1} \cdots j_{k}}=c_{i j_{1}}+\cdots+c_{j_{k-1} j_{k}} \geq 0$, we can add the valid cut

$$
\sum_{q \in Q} x_{q} \leq p_{1}
$$

Computational Results

Using CPLEX 12.6.1 we compare the submodular formulations for the $\mathrm{M} p \mathrm{MP}$ and for the $\mathrm{MU} p \mathrm{LP}$ with three previously presented formulations. A Path-based formulation (PBF, Aardal et al., 1999), an Arc-based formulation (ABF, Aardal et al., 1996; Gabor and Ommeren, 2010) and a Flow-based formulation (FBF, Kratica et al., 2014).
Other Formulations

	$k=2$	$k=3$	$k=4$	$\|I\|=500$	$\|I\|=1,000$	$\|I\|=1,500$	$\|I\|=2,000$	cap	Total	SGM sec	SGM nodes	Avg. \%gap
SFD	$36 / 39$	$22 / 25$	$12 / 12$	$16 / 16$	$37 / 37$	$12 / 16$	$2 / 4$	$21 / 21$	$70 / 76$	3.46	13.44	1.24
FBF	$28 / 39$	$18 / 25$	$11 / 12$	$13 / 16$	$33 / 37$	$6 / 16$	$2 / 4$	$21 / 21$	$57 / 76$	10.54	13.70	3.19
ARB	$28 / 39$	$14 / 25$	$6 / 12$	$13 / 16$	$27 / 37$	$4 / 16$	$1 / 4$	$19 / 21$	$48 / 76$	46.91	0.14	0.01
PBF	$35 / 39$	$8 / 25$	$0 / 12$	$8 / 16$	$24 / 37$	$6 / 16$	$2 / 4$	$15 / 21$	$43 / 76$	-	-	-
Greedy	$17 / 39$	$8 / 25$	$6 / 12$	$6 / 16$	$20 / 37$	$4 / 16$	$1 / 4$	$11 / 21$	$31 / 76$	0.00	-	1.33

Table : Summary of the computational results for the MpMP.

	$k=2$	$k=3$	$k=4$	$\|I\|=500$	$\|I\|=1,000$	$\|I\|=1,500$	$\|I\|=2000$	cap	MUFLP	Total	SGM sec	SGM nodes	Avg. \%gap
SFML	$29 / 36$	$15 / 25$	$9 / 12$	$12 / 16$	$31 / 37$	$9 / 16$	$1 / 4$	$16 / 21$	$10 / 20$	$53 / 73$	68.84	440.64	4.41
FBF	$18 / 36$	$14 / 25$	$8 / 12$	$13 / 16$	$29 / 37$	$2 / 16$	$0 / 4$	$21 / 21$	$14 / 20$	$44 / 73$	91.70	103.2	7.76
ARB	$25 / 36$	$16 / 25$	$5 / 12$	$13 / 16$	$29 / 37$	$4 / 16$	$1 / 4$	$21 / 21$	$20 / 20$	$47 / 73$	79.64	0.37	0.01
PBF	$28 / 36$	$6 / 25$	$0 / 12$	$7 / 16$	$23 / 37$	$4 / 16$	$0 / 4$	$15 / 21$	$12 / 20$	$34 / 73$	-	-	-
Greedy	$1 / 36$	$0 / 25$	$0 / 12$	$0 / 16$	$1 / 37$	$0 / 16$	$0 / 4$	$0 / 21$	$0 / 20$	$2 / 73$	0.00	-	5.88

Table : Summary of the Computational Results for the MUpLP.

Comparison of models by number of solved instances for $\mathrm{M} p \mathrm{MP}$

Comparison of models by number of solved instances for MUpLP

Aardal, K., Chudak, F. A., and Shmoys, D. B. (1999). A 3 -approximation algorithm for the k-level uncapacitated facility location problem. Information Processing Letters, 72:161-167.
Aardal, K., Labbé, M., Leung, J., and Queyranne, M. (1996). On the two-level uncapacitated facility location problem. INFORMS Journal on Computing, 8(3):289-301.
Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: theory, algorithms, and applications. Prentice Hall, Englewood Cliffs, New Jersey.
Cornuéjols, G., Fisher, M. L., and Nemhauser, G. L. (1977). Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Management science, 23(8):789-810.
Gabor, A. F. and Ommeren, J.-K. C. (2010). A new approximation algorithm for the multilevel facility location problem. Discrete Applied Mathematics, 158(5):453-460.
Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3):450-459.

Kaufman, L., Eede, M., and Hansen, P. (1977). A plant and warehouse location problem. Operational Research Quarterly, 28(3):547-554.
Kratica, J., Dugošija, D., and Savić, A. (2014). A new mixed integer linear programming model for the multi level uncapacitated facility location problem. Applied Mathematical Modelling, 38(7-8):2118-2129.
Kuehn, A. and Hamburger, M. (1963). A heuristic program for locating warehouses. Management science, 9(4):643-666.
Nemhauser, G. L. and Wolsey, L. A. (1981). Maximizing submodular functions: formulations and analysis of algorithms. Annals of Discrete Mathematics, 11:279-301.
Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functions - I. Mathematical Programming, 14:265-294.
Ortiz-Astorquiza, C., Contreras, I., and Laporte, G. (2015a). Formulations and Approximation Algorithms for Multi-level Facility Location. Submitted to INFORMS Journal on Computing.

Ortiz-Astorquiza, C., Contreras, I., and Laporte, G. (2015b). The multi-level facility location problem as the maximization of a submodular set function. European Journal of Operational Research, 247:1013-1016.

Appendix

c	1_{2}	2_{2}
1_{1}	1	1
2_{1}	100	1

(a) $T=\left\{1_{1}, 1_{2}, 2_{2}\right\}$ and $S=\left\{1_{1}, 2_{2}\right\}$

(b) $T \cup\left\{2_{1}\right\}$ and $S \cup\left\{2_{1}\right\}$

Vertex representation of the MUFLP

$$
\begin{aligned}
& v(T)=1, v\left(T \cup\left\{2_{1}\right\}\right)=100 \text { and } \rho_{2_{1}}(T)=99 \\
& v(S)=1, v\left(S \cup\left\{2_{1}\right\}\right)=1 \text { and } \rho_{2_{1}}(S)=0 .
\end{aligned}
$$

(a)

(b)

(c)

Path-allocation representation of the MUFLP
(a) $T=\left\{\left(1_{1}, 1_{2}\right),\left(1_{1}, 2_{2}\right)\right\}$ and $S=\left\{\left(1_{1}, 2_{2}\right)\right\}$
(b) $T=\left\{\left(1_{1}, 1_{2}\right),\left(1_{1}, 2_{2}\right),\left(2_{1}, 1_{2}\right)\right\}$ and $S=\left\{\left(1_{1}, 2_{2}\right),\left(2_{1}, 1_{2}\right)\right\}$
(c) $T=\left\{\left(1_{1}, 1_{2}\right),\left(1_{1}, 2_{2}\right),\left(2_{1}, 2_{2}\right)\right\}$ and $S=\left\{\left(1_{1}, 2_{2}\right),\left(2_{1}, 2_{2}\right)\right\}$
back

Proposition

The greedy heuristic for the MUpLP can be executed in $O\left(p_{1}\left|V_{1}\right|(|V| \log |V|+E+|I|)\right)$ time.

Proof: At iteration t the subset $A_{q^{*}}(t) \subseteq N^{t-1}$ can be efficiently identified by solving a series of shortest path problems as follows. We consider the auxiliary directed graph $G^{t}=\left(V^{t}, A^{t}\right)$, where $A^{t}=\left\{(i, j): i \in V_{r}^{t}, j \in V_{r+1}^{t}, r=1, \ldots, k-1\right\}$. For each $a \in A^{t}$, we define its length as $w_{j_{r} j_{r+1}}=f_{j_{r+1}}-c_{j_{r} j_{r+1}}$ if $j_{r+1} \notin R^{t}$ and $w_{j_{r} j_{r+1}}=-c_{j_{r} j_{r+1}}$ if $j_{r+1} \in R^{t}$. This operation takes $O(|E|)$ time. We then compute a candidate path q, and its associated subset $A_{q}(t)$, associated with each facility $j \in V_{1} \backslash R_{1}^{t}$ by solving a shortest path problem between j and all nodes in V_{k}. This can be done in $O(|V| \log |V|+|E|)$ time using the Fibonacci heap implementation of Dijkstra's algorithm (Ahuja et al., 1993). Finally, we evaluate $\rho_{A_{q}(t)}\left((S, R)^{t-1}\right)$ for each candidate path q. This takes $O(|I|)$ time. Therefore, each iteration of the algorithm takes a total of $O\left(\left|V_{1}\right|(|V| \log |V|+E+|I|)\right)$ time. Given that there are at most p_{1} iterations in the algorithm, the result follows.

Property 1:
Under Assumption 1, there exists an optimal solution to the $\mathrm{MU} p \mathrm{LP}$ in which every open facility at level r is assigned to exactly one facility at level $r+1$, for $r=1, \ldots, k$ (i.e. coherent structure).

Property 2:
Under Assumption 1, there exists an optimal solution to the $\operatorname{MU} p \mathrm{LP}$ in which at most p_{1} paths are used, i.e. $|S| \leq p_{1}$.

Consider the polyhedron X defined as

$$
\begin{gathered}
\left\{\left(\eta, x, y_{1}, \cdots, y_{k}\right): \eta \leq h(S)+\sum_{q \in Q \backslash S} \rho_{q}(S) x_{q}, \quad \forall S \subseteq Q\right. \\
\left.x \in\{0,1\}^{|Q|}, y_{r} \in\{0,1\}^{\left|V_{r}\right|}, \eta \in \mathbb{R}\right\}
\end{gathered}
$$

where the binary variables x_{q} can be interpreted as $x_{q}=1$ if the path $q \in Q$ is open and 0 otherwise, and y_{r} corresponds to the incidence vector for each level r of the facilities that are open.

Proposition

Let $T \subseteq Q, N_{r}(T) \subseteq V_{r}$ for all r, and $\left(\eta, x^{T}, y_{1}^{T}, \cdots, y_{k}^{T}\right)$ where $x^{T}, y_{1}^{T}, \cdots, y_{k}^{T}$ are the incidence vectors of T and $N_{r}(T)$, respectively. Then, $\left(\eta, x^{T}, y_{1}^{T}, \cdots, y_{k}^{T}\right) \in X$ if and only if $\eta \leq h(T)$.

Also, note that since $h(S)$ is the sum of $|I|$ submodular set functions, one for each $i \in I$, we can replace the objective function η by $\sum_{i \in I} \eta^{i}$ and constraints (2) with

$$
\begin{equation*}
\eta^{i} \leq h^{i}(S)+\sum_{q \in Q \backslash S} \rho_{q}^{i}(S) x_{q} \quad i \in I, S \subseteq Q, \tag{7}
\end{equation*}
$$

where $\rho_{q}^{i}(S)=h^{i}(S \cup\{q\})-h^{i}(S)$. Moreover, most of these inequalities are redundant. First, note that for $S \subseteq Q$ and $i \in I$ given, the right-hand side of their associated constraint (7) does not change if the summation is taken over all $q \in Q$, since $\rho_{q}^{i}(S)=0$ for $q \in S$. Also, $h^{i}(S)=c_{i s_{1}, \cdots, s_{k}}$ for some $s_{1}, \cdots, s_{k} \in S$. For simplicity, we write $c_{i s}$ for $s \in S \subseteq Q$. Then, $\rho_{q}^{i}(S)=c_{i q}-c_{i s}$ if $c_{i q}>c_{i s}$ or $\rho_{q}^{i}(S)=0$ if $c_{i q} \leq c_{i s}$. For any S, its associated constraint (7) can thus be written as

$$
\eta^{i} \leq c_{i s}+\sum_{q \in Q}\left(c_{i q}-c_{i s}\right)^{+} x_{q}
$$

for some $s \in S$ and $\chi^{+}=\max \{0, \chi\}$. Therefore, if for each $i \in I$ we consider the ordering $0=c_{i q_{0}} \leq c_{i q_{1}} \leq \cdots \leq c_{i q_{|Q|}}$, we may select only the sets $S_{q}=\{q\}$ with $q=q_{0}, \cdots, q_{|Q|-1}$ in constraints (7).

Proposition

The MpMP can be formulated as
maximize $\quad \sum_{i \in I} \eta^{i}$
subject to

$$
(3)-(6)
$$

$$
\begin{equation*}
\eta^{i} \leq c_{i q_{t}}+\sum_{q \in Q}\left(c_{i q}-c_{i q_{t}}\right)^{+} x_{q} \quad i \in I, \quad t=0, \cdots,|Q| \tag{8}
\end{equation*}
$$

Proof:
Since constraints (8) are a subset of constraints (2), we only need to show that if $\left(\zeta, x^{T}, y^{T}\right)$ does not satisfy constraints (2) (i.e $\zeta>h^{\hat{i}}(T)$ for some \hat{i}, by Proposition 3.2) for a given $T \subseteq Q$, then $\left(\zeta, x^{T}, y^{T}\right)$ is also infeasible with respect to constraints (8). Thus, suppose $h^{\hat{i}}(T)=\max _{q \in T} c_{i q}=c_{\hat{i} q_{t}}$, then the associated $t^{t h}$ inequality (8) would be
$\zeta \leq c_{\hat{i} q_{t-1}}+\sum_{q \in Q}\left(c_{\hat{i} q}-c_{\hat{i} q_{t-1}}\right)^{+} x_{q}^{T}=c_{\hat{i} q_{t-1}}+c_{\hat{i} q_{t}}-c_{\hat{i} q_{t-1}}=c_{\hat{i} q_{t}}=h^{\hat{i}}(T)$,
which contradicts $\zeta>h^{\hat{i}}(T)$ and the result follows

A Path-based Formulation

(PBF) max

$$
\begin{array}{ll}
\max & \sum_{i \in I} \sum_{q \in Q} c_{i q} x_{i q}-\sum_{r=1}^{k} \sum_{j_{r} \in V_{r}} f_{j_{r}} y_{j_{r}} \\
\text { s. t. } & \sum_{q \in Q} x_{i q}=1 \quad i \in I \\
& \sum_{q \in Q: j_{r} \in q} x_{i q} \leq y_{j_{r}} \quad i \in I, \quad j_{r} \in V_{r}, \quad r=1, \cdots, k \\
& \sum_{j_{r} \in V_{r}} y_{j_{r}} \leq p_{r} \quad r=1, \cdots, k \\
& x_{i q} \geq 0 \quad i \in I, \quad q \in Q \\
& y_{j_{r}} \in\{0,1\} \quad j_{r} \in V_{r}, \quad r=1, \cdots, k
\end{array}
$$

(Aardal et al., 1999)

An Arc-based Formulation

(ABF) maximize $\quad \sum_{i \in I} \sum_{j_{1} \in V_{1}} c_{i j_{1}} x_{i j_{1}}+\sum_{i \in I} \sum_{r=1}^{k-1} \sum_{(a, b) \in V_{r} \times V_{r+1}} c_{a b} z_{i a b}-\sum_{r=1}^{k} \sum_{j_{r} \in V_{r}} f_{j_{r}}$
subject to

$$
\begin{aligned}
& \sum_{j_{1} \in V_{1}} x_{i j_{1}}=1 \quad i \in I \\
& \sum_{b \in V_{2}} z_{i a b}=x_{i a} \quad i \in I, \quad a \in V_{1}
\end{aligned}
$$

$$
\sum_{b \in V_{r+1}} z_{i a b}=\sum_{b^{\prime} \in V_{r-1}} z_{i b^{\prime} a} \quad i \in I, a \in V_{1}, r=2, \cdots, k-1
$$

$$
x_{i j_{1}} \leq y_{j_{1}} \quad i \in I, \quad j_{1} \in V_{1}
$$

$$
\sum_{a \in V_{r-1}} z_{i a b} \leq y_{b} \quad i \in I, b \in V_{r} r=2, \cdots, k
$$

$$
\sum_{j_{r} \in V_{r}} y_{j_{r}} \leq p_{r} \quad r=1, \cdots, k
$$

$$
x_{i j_{1}} \geq 0, z_{i a b} \geq 0 \quad i \in I, \quad j_{1} \in V_{1}, \quad(a, b) \in V_{r} \times V_{r+1}
$$

$$
y_{j_{r}} \in\{0,1\} \quad j_{r} \in V_{r}, \quad r=1, \cdots, k
$$

A Flow-based Formulation

(FBF) maximize $\sum_{r=1}^{k} \sum_{a \in V_{r+1}} \sum_{b \in V_{r}} c_{a b} z_{a b r}-\sum_{r=1}^{k} \sum_{j_{r} \in V_{r}} f_{j_{r}} y_{j_{r}}$

$$
\begin{array}{ll}
\text { subject to } & \sum_{b \in V_{1}} z_{a b 0}=1 \quad a \in I \\
& \sum_{b \in V_{r-1}} z_{a b r-1}=\sum_{b \in V_{r+1}} z_{b a r} a \in V_{r}, \quad r=1, \cdots, k-1 \\
& z_{a b r} \leq m y_{b} \quad a \in V_{r+1}, \quad b \in V_{r} \quad r=1, \cdots, k \\
& \sum_{j_{r} \in V_{r}} y_{j_{r} \leq p_{r}} \quad r=1, \cdots, k \\
& z_{i j r} \geq 0 \quad i \in V_{r+1}, \quad j \in V_{r}, r=0, \cdots, k \\
& y_{j_{r} \in\{0,1\} \quad} \quad j_{r} \in V_{r}, \quad r=1, \cdots, k
\end{array}
$$

(Kratica et al., 2014)

