Formulations and Approximation Algorithms for Multi-level Facility Location Problems

Camilo Ortiz-Astorquiza¹ Ivan Contreras¹ Gilbert Laporte²

¹Concordia University, Montreal - CIRRELT.

²HEC, Montreal -CIRRELT.

May 2016

Outline

Introduction

Classes of Problems Submodularity

Main Results

Approximation Algorithms MILP Formulation Computational Results

- $\diamond~$ Location of the facilities
- ◊ Allocation of customers to open facilities

- $\diamond~$ Location of the facilities
- ◊ Allocation of customers to open facilities

 Uncapacitated Facility Location Problem (UFLP)

(Kuehn and Hamburger, 1963)

- *p*-Median Problem (*p*-MP)
 (Hakimi, 1964)
- Uncapacitated *p*-Location
 Problem (U*p*LP)

(Cornuéjols et al., 1977)

- $\diamond~$ Location of the facilities
- ◊ Allocation of customers to open facilities

- Uncapacitated Facility Location Problem (UFLP) (Kuehn and Hamburger, 1963)
- *p*-Median Problem (*p*-MP)
 (Hakimi, 1964)
- Uncapacitated *p*-Location
 Problem (U*p*LP)

(Cornuéjols et al., 1977)

 Multi-level Uncapacitated Facility Location Problem (MUFLP)

(Kaufman et al., 1977)

- $\diamond~$ Location of the facilities
- ◊ Allocation of customers to open facilities

- Uncapacitated Facility Location Problem (UFLP) (Kuehn and Hamburger, 1963)
- *p*-Median Problem (*p*-MP)
 (Hakimi, 1964)
- Uncapacitated *p*-Location
 Problem (U*p*LP)

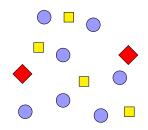
(Cornuéjols et al., 1977)

- Multi-level Uncapacitated Facility Location Problem (MUFLP) (Kaufman et al., 1977)
- Multi-level *p*-median Problem (MpMP)
- Multi-level Uncapacitated p-Location Problem (MUpLP)

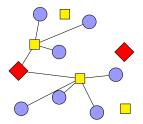
- Set of customers I
- ► Sets of potential facilities of levels 1 to k (V_1, \cdots, V_k)
- ► Setup costs f_{j_r} for each facility
- Allocation profits $c_{ij_1\cdots j_k}$

		\bigcirc	
	\bigcirc		
		\bigcirc	
\bigcirc	\bigcirc	\bigcirc	

- Set of customers I
- ► Sets of potential facilities of levels 1 to k (V_1, \cdots, V_k)
- ► Setup costs f_{j_r} for each facility
- Allocation profits $c_{ij_1\cdots j_k}$

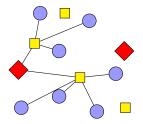


- Set of customers I
- ► Sets of potential facilities of levels 1 to k (V_1, \cdots, V_k)
- Setup costs f_{j_r} for each facility
- Allocation profits $c_{ij_1\cdots j_k}$



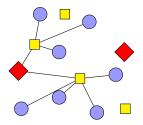
The MUFLP consists of selecting a set of facilities to open at each of the k levels and of assigning each customer to a set of facilities, exactly one at each level, while maximizing the difference of the total profit minus the setup cost for opening the facilities.

- Set of customers I
- ► Sets of potential facilities of levels 1 to k (V_1, \cdots, V_k)
- Setup costs f_{j_r} for each facility
- Allocation profits $c_{ij_1\cdots j_k}$
- A vector $p = (p_1 \cdots, p_k)$



The MUpLP is defined as the MUFLP with the addition of satisfying the cardinality constraints.

- Set of customers I
- ► Sets of potential facilities of levels 1 to k (V_1, \cdots, V_k)
- Setup costs f_{j_r} for each facility
- Allocation profits $c_{ij_1\cdots j_k}$
- A vector $p = (p_1 \cdots, p_k)$



The MUpLP is defined as the MUFLP with the addition of satisfying the cardinality constraints.

The MpMP is a particular case of MUpLP when all f_{j_r} are zero.

Submodularity

Let N be a finite set and z be a real-valued function defined on the set of subsets of N and $\rho_e(W) = z(W \cup \{e\}) - z(W)$.

Definition

- 1. z is submodular if $\rho_e(W) \ge \rho_e(U)$, $\forall W \subseteq U \subseteq N$ and $e \in N \setminus U$.
- 2. z is nondecreasing if $\rho_e(W) \ge \rho_e(U) \ge 0$, $\forall W \subseteq U \subseteq N$ and $e \in N$.

Some results for single level FLPs

• Nemhauser et al. (1978) presented a greedy heuristic for

$$\max_{S \subseteq N} \{ z(S) : |S| \le p \text{ and } z \text{ is submodular} \}.$$
(1)

Proposition

If the greedy heuristic is applied to problem (1) then

$$\frac{Z - Z^G}{Z - z(\emptyset)} \leq \frac{p - 1}{p} \text{ and } \frac{Z - Z^G}{Z - z(\emptyset) + p\theta} \leq \left(\frac{p - 1}{p}\right)^p.$$

where, Z is the optimal value, Z^G the value obtained by the greedy heuristic and $\rho_e(W) \ge \theta$ for all $W \subseteq N$ and $e \in N \setminus W$.

Some results for single level FLPs

• Nemhauser et al. (1978) presented a greedy heuristic for

$$\max_{S \subseteq N} \{ z(S) : |S| \le p \text{ and } z \text{ is submodular} \}.$$
(1)

Proposition

If the greedy heuristic is applied to problem (1) then

$$\frac{Z - Z^G}{Z - z(\emptyset)} \leq \frac{p - 1}{p} \text{ and } \frac{Z - Z^G}{Z - z(\emptyset) + p\theta} \leq \left(\frac{p - 1}{p}\right)^p.$$

where, Z is the optimal value, Z^G the value obtained by the greedy heuristic and $\rho_e(W) \ge \theta$ for all $W \subseteq N$ and $e \in N \setminus W$.

When z is also nondecreasing, that is $\theta = 0$ (e.g. *p*-MP)

$$\frac{Z - Z^G}{Z - z(\emptyset)} \le \left(\frac{p - 1}{p}\right)^p \le 1/e,$$

and the bound is tight.

Some results for single level FLPs

• Nemhauser et al. (1978) presented a greedy heuristic for

$$\max_{S \subseteq N} \{ z(S) : |S| \le p \text{ and } z \text{ is submodular} \}.$$
(1)

Proposition

If the greedy heuristic is applied to problem (1) then

$$\frac{Z - Z^G}{Z - z(\emptyset)} \leq \frac{p - 1}{p} \text{ and } \frac{Z - Z^G}{Z - z(\emptyset) + p\theta} \leq \left(\frac{p - 1}{p}\right)^p.$$

where, Z is the optimal value, Z^G the value obtained by the greedy heuristic and $\rho_e(W) \ge \theta$ for all $W \subseteq N$ and $e \in N \setminus W$.

When z is also nondecreasing, that is $\theta = 0$ (e.g. *p*-MP)

$$\frac{Z - Z^G}{Z - z(\emptyset)} \le \left(\frac{p - 1}{p}\right)^p \le 1/e,$$

and the bound is tight.

• MILP Formulations (Nemhauser and Wolsey, 1981)

A Submodular Representation for the MUpLP

$$\max_{R \subseteq V} \left\{ \sum_{i \in I} \max_{j_1 \in R_1, \cdots, j_k \in R_k} c_{ij_1 \cdots j_k} - \sum_{r=1}^k \sum_{j_r \in R_r} f_{j_r} : |R_r| \le p_r \right\}$$

The above objective function does not satisfy submodularity. Example Submodularity

A Submodular Representation for the MUpLP

$$\max_{R\subseteq V} \left\{ \sum_{i\in I} \max_{j_1\in R_1,\cdots,j_k\in R_k} c_{ij_1\cdots j_k} - \sum_{r=1}^k \sum_{j_r\in R_r} f_{j_r} : |R_r| \le p_r \right\}$$

The above objective function does not satisfy submodularity. Example Submodularity

Let Q be the set of all possible simple paths (j_1, \cdots, j_k) and $N = Q \cup V$.

$$z(S,R) = h(S,R) + f(S,R) = \sum_{i \in I} \max_{(j_1, \cdots, j_k) \in S} c_{ij_1 \cdots j_k} - \sum_{r=1}^k \sum_{j \in R_r} f_{j_r}.$$

A Submodular Representation for the MUpLP

$$\max_{R\subseteq V} \left\{ \sum_{i\in I} \max_{j_1\in R_1,\cdots,j_k\in R_k} c_{ij_1\cdots j_k} - \sum_{r=1}^k \sum_{j_r\in R_r} f_{j_r} : |R_r| \le p_r \right\}$$

The above objective function does not satisfy submodularity. Example Submodularity

Let Q be the set of all possible simple paths (j_1, \dots, j_k) and $N = Q \cup V$.

$$z(S,R) = h(S,R) + f(S,R) = \sum_{i \in I} \max_{(j_1, \dots, j_k) \in S} c_{ij_1 \dots j_k} - \sum_{r=1}^k \sum_{j \in R_r} f_{j_r}.$$
$$\max_{(S,R) \subseteq N} \{ z(S,R) : |N_r(S)| \le p_r \text{ and } N_r(S) = R_r \ \forall r \},$$

where $N_r(S) = \{j_r \in V_r : j_r \in s \text{ for some } s \in S\}$ and z satisfies submodularity. However, in general, z is not nondecreasing. (Ortiz-Astorquiza et al., 2015b)

The Greedy Heuristic for the MUpLP

Let $(S, R)^0 \leftarrow \emptyset$, $N^0 \leftarrow N$ and $t \leftarrow 1$ while $t < p_1 + 1$ do Select $A_{q^*}(t) \subseteq N^{t-1}$ for which $\rho_{A_{q^*}(t)}((S,R)^{t-1}) = \max_{A_q(t) \in N^{t-1}} \rho_{A_q(t)}((S,R)^{t-1})$ with ties broken arbitrarily. Set $\rho_{t-1} \leftarrow \rho_{A_{\sigma^*}(t)}((S,R)^{t-1})$ if $\rho_{t-1} \leq 0$ then Stop with $(S, R)^{t-1}$ as the greedy solution else Set $(S, R)^t \leftarrow (S, R)^{t-1} \cup A_{a^*}(t)$ and $N^t \leftarrow N^{t-1} \setminus A_{a^*}(t)$ end if for r such that $|N_r(S^t)| = p_r \operatorname{do}$ Set $N^t \leftarrow N^t \setminus \{q : \exists j_r \in V_r \setminus R_r^t\}$ end for $t \leftarrow t + 1$ end while

Worst-case bounds for greedy heuristics

Under the assumption that $c_{ij_1\cdots j_k} = c_{ij_1} + \cdots + c_{j_{k-1}j_k} \ge 0.$

Proposition

If the greedy heuristic for the MUpLP terminates after t^* iterations,

$$\frac{Z - Z^G}{Z - z(\emptyset) + p_1\theta} \le \frac{t^*}{p_1} \left(\frac{p_1 - 1}{p_1}\right)^{p_1} \le \left(\frac{p_1 - 1}{p_1}\right)^{p_1} \le 1/e.$$

Proposition

If the greedy heuristic is applied to MpMP, then

$$\frac{H-H^G}{H} \leq \left(\frac{p_1-1}{p_1}\right)^{p_1} \leq 1/e,$$

and the bound is tight.

This work was submitted for publication (Ortiz-Astorquiza et al., 2015a) 20/29

A Submodular MILP Formulation

 $r=1,\cdots,k.$

Let x_q be 1 if path $q \in Q$ is open and y_{j_r} be 1 if facility $j_r \in V_r$ is open, 0 otherwise. The MUpLP can be formulated as

$$(SF) \max \qquad \eta - \sum_{r=1}^{k} \sum_{j_r \in V_r} f_{j_r} y_{j_r}$$
s.t.
$$\eta \le h(S) + \sum_{q \in Q \setminus S} \rho_q(S) x_q \quad S \subseteq Q \qquad (2)$$

$$\sum_{q \in Q: j_r \in q} x_q \le M_r y_{j_r} \quad j_r \in V_r, \ r = 1, \cdots, k \qquad (3)$$

$$\sum_{j_r \in V_r} y_{j_r} \le p_r \qquad r = 1, \cdots, k \qquad (4)$$

$$x_q \in \{0, 1\} \qquad q \in Q \qquad (5)$$

$$y_{j_r} \in \{0, 1\} \qquad j_r \in V_r, \ r = 1, \cdots, k, \qquad (6)$$
where,
$$M_r = \min\{p_1, |Q|/V_r\}$$
 are sufficiently large values for

A Submodular MILP Formulation

Constraints (2) can be written as

$$\eta^{i} \leq c_{iq_{t}} + \sum_{q \in Q} (c_{iq} - c_{iq_{t}})^{+} x_{q} \quad i \in I, \quad t = 0, \cdots . |Q| - 1,$$

A Submodular MILP Formulation

Constraints (2) can be written as

$$\eta^{i} \leq c_{iq_{t}} + \sum_{q \in Q} (c_{iq} - c_{iq_{t}})^{+} x_{q} \quad i \in I, \quad t = 0, \cdots . |Q| - 1,$$

And since we assumed that $c_{ij_1\cdots j_k} = c_{ij_1} + \cdots + c_{j_{k-1}j_k} \ge 0$, we can add the valid cut

$$\sum_{q \in Q} x_q \le p_1.$$

Computational Results

Using CPLEX 12.6.1 we compare the submodular formulations for the MpMP and for the MUpLP with three previously presented formulations. A Path-based formulation (PBF, Aardal et al., 1999), an Arc-based formulation (ABF, Aardal et al., 1996; Gabor and Ommeren, 2010) and a Flow-based formulation (FBF, Kratica et al., 2014).

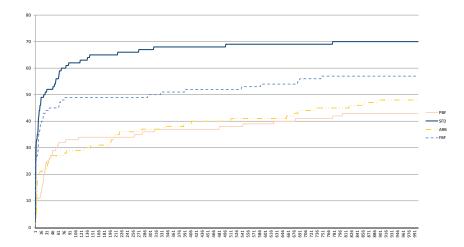
Other Formulations

										SGM	SGM	Avg.
	k = 2	k = 3	k = 4	I = 500	I =1,000	I =1,500	I =2,000	cap	Total	sec	nodes	%gap
SFD	36/39	22/25	12/12	16/16	37/37	12/16	2/4	21/21	70/76	3.46	13.44	1.24
FBF	28/39	18/25	11/12	13/16	33/37	6/16	2/4	21/21	57/76	10.54	13.70	3.19
ARB	28/39	14/25	6/12	13/16	27/37	4/16	1/4	19/21	48/76	46.91	0.14	0.01
PBF	35/39	8/25	0/12	8/16	24/37	6/16	2/4	15/21	43/76	-	-	-
Greedy	17/39	8/25	6/12	6/16	20/37	4/16	1/4	11/21	31/76	0.00	-	1.33

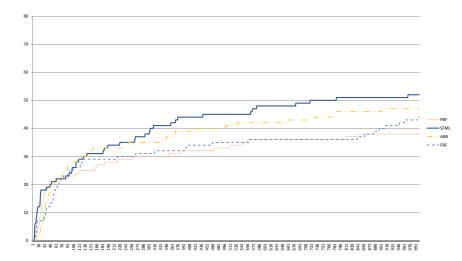
Table : Summary of the computational results for the MpMP.

											SGM	SGM	Avg.
	k = 2	k = 3	k = 4	I = 500	I =1,000	I = 1,500	I =2000	cap	MUFLP	Total	sec	nodes	%gap
SFML	29/36	15/25	9/12	12/16	31/37	9/16	1/4	16/21	10/20	53/73	68.84	440.64	4.41
FBF	18/36	14/25	8/12	13/16	29/37	2/16	0/4	21/21	14/20	44/73	91.70	103.2	7.76
ARB	25/36	16/25	5/12	13/16	29/37	4/16	1/4	21/21	20/20	47/73	79.64	0.37	0.01
PBF	28/36	6/25	0/12	7/16	23/37	4/16	0/4	15/21	12/20	34/73	-	-	-
Greedy	1/36	0/25	0/12	0/16	1/37	0/16	0/4	0/21	0/20	2/73	0.00	-	5.88

Table : Summary of the Computational Results for the MUpLP.



Comparison of models by number of solved instances for MpMP



Comparison of models by number of solved instances for $\mathrm{MU}p\mathrm{LP}$

- Aardal, K., Chudak, F. A., and Shmoys, D. B. (1999). A 3-approximation algorithm for the k-level uncapacitated facility location problem. *Information Processing Letters*, 72:161–167.
- Aardal, K., Labbé, M., Leung, J., and Queyranne, M. (1996). On the two-level uncapacitated facility location problem. *INFORMS Journal on Computing*, 8(3):289–301.
- Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: theory, algorithms, and applications. Prentice Hall, Englewood Cliffs, New Jersey.
- Cornuéjols, G., Fisher, M. L., and Nemhauser, G. L. (1977). Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. *Management science*, 23(8):789–810.
- Gabor, A. F. and Ommeren, J.-K. C. (2010). A new approximation algorithm for the multilevel facility location problem. *Discrete Applied Mathematics*, 158(5):453–460.
- Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3):450–459.

- Kaufman, L., Eede, M., and Hansen, P. (1977). A plant and warehouse location problem. Operational Research Quarterly, 28(3):547–554.
- Kratica, J., Dugošija, D., and Savić, A. (2014). A new mixed integer linear programming model for the multi level uncapacitated facility location problem. *Applied Mathematical Modelling*, 38(7-8):2118–2129.
- Kuehn, A. and Hamburger, M. (1963). A heuristic program for locating warehouses. *Management science*, 9(4):643–666.
- Nemhauser, G. L. and Wolsey, L. A. (1981). Maximizing submodular functions: formulations and analysis of algorithms. Annals of Discrete Mathematics, 11:279–301.
- Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functions - I. *Mathematical Programming*, 14:265–294.
- Ortiz-Astorquiza, C., Contreras, I., and Laporte, G. (2015a). Formulations and Approximation Algorithms for Multi-level Facility Location. Submitted to INFORMS Journal on Computing.

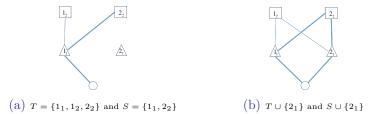
Ortiz-Astorquiza, C., Contreras, I., and Laporte, G. (2015b). The multi-level facility location problem as the maximization of a submodular set function. *European Journal of Operational Research*, 247:1013–1016.

Appendix

Greedy

Submodular Formulations

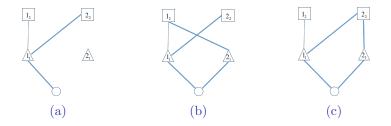
c 1_2 2_2 1_1 1 2_1 100



Vertex representation of the MUFLP

$$v(T) = 1, v(T \cup \{2_1\}) = 100 \text{ and } \rho_{2_1}(T) = 99$$

$$v(S) = 1, v(S \cup \{2_1\}) = 1 \text{ and } \rho_{2_1}(S) = 0.$$



Path-allocation representation of the MUFLP

(a)
$$T = \{(1_1, 1_2), (1_1, 2_2)\}$$
 and $S = \{(1_1, 2_2)\}$
(b) $T = \{(1_1, 1_2), (1_1, 2_2), (2_1, 1_2)\}$ and $S = \{(1_1, 2_2), (2_1, 1_2)\}$
(c) $T = \{(1_1, 1_2), (1_1, 2_2), (2_1, 2_2)\}$ and $S = \{(1_1, 2_2), (2_1, 2_2)\}$
back

Proposition

The greedy heuristic for the MUpLP can be executed in $O(p_1|V_1|(|V|\log |V| + E + |I|))$ time.

Proof: At iteration t the subset $A_{q^*}(t) \subseteq N^{t-1}$ can be efficiently identified by solving a series of shortest path problems as follows. We consider the auxiliary directed graph $G^t = (V^t, A^t)$, where $A^{t} = \{(i, j) : i \in V_{r}^{t}, j \in V_{r+1}^{t}, r = 1, \dots, k-1\}$. For each $a \in A^{t}$, we define its length as $w_{j_r j_{r+1}} = f_{j_{r+1}} - c_{j_r j_{r+1}}$ if $j_{r+1} \notin \mathbb{R}^t$ and $w_{i_r i_{r+1}} = -c_{i_r i_{r+1}}$ if $j_{r+1} \in \mathbb{R}^t$. This operation takes O(|E|) time. We then compute a candidate path q, and its associated subset $A_q(t)$, associated with each facility $j \in V_1 \setminus R_1^t$ by solving a shortest path problem between j and all nodes in V_k . This can be done in $O(|V| \log |V| + |E|)$ time using the Fibonacci heap implementation of Dijkstra's algorithm (Ahuja et al., 1993). Finally, we evaluate $\rho_{A_{c}(t)}((S,R)^{t-1})$ for each candidate path q. This takes O(|I|) time. Therefore, each iteration of the algorithm takes a total of $O(|V_1|(|V|\log|V|+E+|I|))$ time. Given that there are at most p_1 iterations in the algorithm, the result follows.

Property 1:

Under Assumption 1, there exists an optimal solution to the MU*p*LP in which every open facility at level r is assigned to exactly one facility at level r + 1, for r = 1, ..., k (i.e. coherent structure).

Property 2:

Under Assumption 1, there exists an optimal solution to the MUpLP in which at most p_1 paths are used, i.e. $|S| \leq p_1$.

Consider the polyhedron X defined as

$$\{(\eta, x, y_1, \cdots, y_k) : \eta \le h(S) + \sum_{q \in Q \setminus S} \rho_q(S) x_q, \quad \forall S \subseteq Q,$$

$$x \in \{0,1\}^{|Q|}, \ y_r \in \{0,1\}^{|V_r|}, \ \eta \in \mathbb{R}\},$$

where the binary variables x_q can be interpreted as $x_q = 1$ if the path $q \in Q$ is open and 0 otherwise, and y_r corresponds to the incidence vector for each level r of the facilities that are open.

Proposition

Let $T \subseteq Q$, $N_r(T) \subseteq V_r$ for all r, and $(\eta, x^T, y_1^T, \dots, y_k^T)$ where x^T, y_1^T, \dots, y_k^T are the incidence vectors of T and $N_r(T)$, respectively. Then, $(\eta, x^T, y_1^T, \dots, y_k^T) \in X$ if and only if $\eta \leq h(T)$.

Also, note that since h(S) is the sum of |I| submodular set functions, one for each $i \in I$, we can replace the objective function η by $\sum_{i \in I} \eta^i$ and constraints (2) with

$$\eta^{i} \le h^{i}(S) + \sum_{q \in Q \setminus S} \rho_{q}^{i}(S) x_{q} \quad i \in I, \ S \subseteq Q,$$

$$\tag{7}$$

where $\rho_q^i(S) = h^i(S \cup \{q\}) - h^i(S)$. Moreover, most of these inequalities are redundant. First, note that for $S \subseteq Q$ and $i \in I$ given, the right-hand side of their associated constraint (7) does not change if the summation is taken over all $q \in Q$, since $\rho_q^i(S) = 0$ for $q \in S$. Also, $h^i(S) = c_{is_1,\dots,s_k}$ for some $s_1,\dots,s_k \in S$. For simplicity, we write c_{is} for $s \in S \subseteq Q$. Then, $\rho_q^i(S) = c_{iq} - c_{is}$ if $c_{iq} > c_{is}$ or $\rho_q^i(S) = 0$ if $c_{iq} \leq c_{is}$. For any S, its associated constraint (7) can thus be written as

$$\eta^i \le c_{is} + \sum_{q \in Q} (c_{iq} - c_{is})^+ x_q,$$

for some $s \in S$ and $\chi^+ = \max\{0, \chi\}$. Therefore, if for each $i \in I$ we consider the ordering $0 = c_{iq_0} \leq c_{iq_1} \leq \cdots \leq c_{iq_{|Q|}}$, we may select only the sets $S_q = \{q\}$ with $q = q_0, \cdots, q_{|Q|-1}$ in constraints (7).

Proposition

The MpMP can be formulated as

maximize
$$\sum_{i \in I} \eta^{i}$$

subject to (3) - (6)
$$\eta^{i} \leq c_{iq_{t}} + \sum_{q \in Q} (c_{iq} - c_{iq_{t}})^{+} x_{q} \quad i \in I, \quad t = 0, \cdots, |Q| - (8)$$

Proof:

Since constraints (8) are a subset of constraints (2), we only need to show that if (ζ, x^T, y^T) does not satisfy constraints (2) (i.e $\zeta > h^{\hat{i}}(T)$ for some \hat{i} , by Proposition 3.2) for a given $T \subseteq Q$, then (ζ, x^T, y^T) is also infeasible with respect to constraints (8). Thus, suppose $h^{\hat{i}}(T) = \max_{q \in T} c_{iq} = c_{\hat{i}q_t}$, then the associated t^{th} inequality (8) would be

$$\zeta \le c_{\hat{i}q_{t-1}} + \sum_{q \in Q} (c_{\hat{i}q} - c_{\hat{i}q_{t-1}})^+ x_q^T = c_{\hat{i}q_{t-1}} + c_{\hat{i}q_t} - c_{\hat{i}q_{t-1}} = c_{\hat{i}q_t} = h^{\hat{i}}(T),$$

which contradicts $\dot{\zeta} > h^{\hat{i}}(T)$ and the result follows

A Path-based Formulation

(PBF) max $\sum \sum c_{iq} x_{iq} - \sum_{r}^{n} \sum f_{j_r} y_{j_r}$ $i \in I \ q \in Q$ $r = 1 \ j_r \in V_r$ s. t. $\sum x_{iq} = 1$ $i \in I$ $a \in O$ $\sum x_{iq} \le y_{j_r} \quad i \in I, \quad j_r \in V_r, \quad r = 1, \cdots, k$ $q \in Q: j_r \in q$ $\sum y_{j_r} \le p_r \qquad r = 1, \cdots, k$ $j_r \in V_r$ $x_{iq} > 0$ $i \in I, q \in Q$ $y_{i_r} \in \{0, 1\}$ $j_r \in V_r, r = 1, \cdots, k.$

back

(Aardal et al., 1999)

An Arc-based Formulation

$$\begin{array}{ll} \text{(ABF) maximize} & \sum_{i \in I} \sum_{j_1 \in V_1} c_{ij_1} x_{ij_1} + \sum_{i \in I} \sum_{r=1}^{k-1} \sum_{(a,b) \in V_r \times V_{r+1}} c_{ab} z_{iab} - \sum_{r=1}^k \sum_{j_r \in V_r} f_{j_r} \\ \text{subject to} & \sum_{j_1 \in V_1} x_{ij_1} = 1 \quad i \in I \\ & \sum_{b \in V_2} z_{iab} = x_{ia} \quad i \in I, \ a \in V_1 \\ & \sum_{b \in V_{r+1}} z_{iab} = \sum_{b' \in V_{r-1}} z_{ib'a} \quad i \in I, \ a \in V_1, \ r = 2, \cdots, k-1 \\ & x_{ij_1} \leq y_{j_1} \quad i \in I, \ j_1 \in V_1 \\ & \sum_{a \in V_{r-1}} z_{iab} \leq y_b \quad i \in I, \ b \in V_r \ r = 2, \cdots, k \\ & \sum_{j_r \in V_r} y_{j_r} \leq p_r \quad r = 1, \cdots, k \\ & x_{ij_1} \geq 0, z_{iab} \geq 0 \quad i \in I, \ j_1 \in V_1, \ (a,b) \in V_r \times V_{r+1} \\ & y_{j_r} \in \{0,1\} \quad j_r \in V_r, \ r = 1, \cdots, k. \end{array}$$

(Aardal et al., 1996; Gabor and Ommeren, 2010)

A Flow-based Formulation

$$(FBF) \quad \text{maximize} \qquad \sum_{r=1}^{k} \sum_{a \in V_{r+1}} \sum_{b \in V_r} c_{ab} z_{abr} - \sum_{r=1}^{k} \sum_{j_r \in V_r} f_{j_r} y_{j_r} \\ \text{subject to} \qquad \sum_{b \in V_1} z_{ab0} = 1 \qquad a \in I \\ \qquad \sum_{b \in V_{r-1}} z_{abr-1} = \sum_{b \in V_{r+1}} z_{bar} \quad a \in V_r, \quad r = 1, \cdots, k - 1 \\ z_{abr} \leq m y_b \qquad a \in V_{r+1}, \quad b \in V_r \quad r = 1, \cdots, k \\ \qquad \sum_{j_r \in V_r} y_{j_r} \leq p_r \qquad r = 1, \cdots, k \\ z_{ijr} \geq 0 \qquad i \in V_{r+1}, \quad j \in V_r, \quad r = 0, \cdots, k \\ y_{j_r} \in \{0, 1\} \qquad j_r \in V_r, \quad r = 1, \cdots, k.$$

(Kratica et al., 2014)