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Definitions

> Set of customers [

» Sets of potential facil-
ities of levels 1 to k ]
Vi, Vi)

» Setup costs f;, for each ‘
facility

» Allocation profits c;j, ...j,

O

The MUFLP consists of selecting a set of facilities to open at each
of the k levels and of assigning each customer to a set of facilities,
exactly one at each level, while maximizing the difference of the
total profit minus the setup cost for opening the facilities.
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ities of levels 1 to k ]
({/17 e sz)

» Setup costs fj,. for each ‘
facility

» Allocation profits c;j, ...j,

» A vector p=(p1--,pk) [

The MUpLP is defined as the MUFLP with the addition of sat-
isfying the cardinality constraints.

The MpMP is a particular case of MUpLP when all f;, are zero.



Submodularity

Let N be a finite set and z be a real-valued function defined on
the set of subsets of N and p.(W) = z(W U {e}) — z(W).

1. z is submodular if p.(W) > p.(U), VW CU C N and
ee N\U.

2. z is nondecreasing if p.(W) > p.(U) >0, VW CUCN
and e € N.



Some results for single level FLPs
e Nemhauser et al. (1978) presented a greedy heuristic for

mcajifc{z(S) :|S] < p and z is submodular}. (1)

Proposition

|OJ

If the greedy heuristic is applied to problem (1) then

Z-7% p-—1 Z-—Z6 <p—1)P
< and < .
Z — z(0) P Z — z(0) + po D

where, Z is the optimal value, ZC the value obtained by the
greedy heuristic and p.(W) > 0 for all W C N and e € N\W.
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e Nemhauser et al. (1978) presented a greedy heuristic for

: < i .
glgaﬁfc{z(S) |S| < p and z is submodular} (1)

Proposition

If the greedy heuristic is applied to problem (1) then

Z-7% p-—1 Z-—Z6 <p—1)P
< and < .
Z — z(0) P Z — z(0) + po D

where, Z is the optimal value, ZC the value obtained by the
greedy heuristic and p.(W) > 0 for all W C N and e € N\W.

When z is also nondecreasing, that is 6 = 0 (e.g. p-MP)

zZ—z¢ p—1\F
= () <ve

and the bound is tight.

e MILP Formulations (Nemhauser and Wolsey, 1981) 5



A Submodular Representation for the MUpLP

max E max C; R <
RCV | <= j1€R,jk Ry AL Z E:fh |R:| < pr

r=1jr-€R;

The above objective function does not satisfy submodularity.

Example Submodularity
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A Submodular Representation for the MUpLP

k
max Z max Cijyoj — Z Z fiv o |Re| < pr
RCV j1€R1,,jrER
< el J1E€ELRL, g€l '—1 j.eRy
The above objective function does not satisfy submodularity.

Let @ be the set of all possible simple paths (ji,---,Jjx) and
N=QuUV.

z2(S,R) =h(S,R)+ f(S,R) =

r=1jER,
max

hax {z(S,R) : IN,.(S)| < pr and N,.(S) = R, Vr},

where N,.(S) = {j, € V. : j, € s for some s € S} and z satis-

fies submodularity. However, in general, z is not nondecreasing.
(Ortiz-Astorquiza et al., 2015b)
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The Greedy Heuristic for the MUpLP

Let (S,R)? «+ 0, N+ N and t + 1
while t < p; +1 do
Select Ay« (t) € N*=1 for which

pa,. ) (S, R)1) = A hax pa, i ((S,R)'™") with ties broken

arbitrarily. Set pr—1 < pa,. (1) ((S; R)t1h)
if p;_1 <0 then
Stop with (S, R)!~! as the greedy solution
else
Set (S, R)! < (S,R)!"" U Ay (t) and N < N1\ A (t)
end if
for r such that |N,.(S*)| = p, do
Set N <~ N\ {q:3j, € V. \ Rt}
end for
t—t+1
end while
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Worst-case bounds for greedy heuristics
Under the assumption that ¢;j,...;, = ¢ij, + -+ ¢, = 0.

If the greedy heuristic for the MUpLP terminates after t*
iterations,

_ 7G * _ p1 . P1
Z—-7 S75<171 1) < <p1 1> <1/e.
Z—z20)+p10 ~p1 \ p1 P1

Proposition

If the greedy heuristic is applied to MpMP, then

_ gG . P1
H H S (pl 1) S 1/6,
H Y41

and the bound is tight.
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A Submodular MILP Formulation
Let x4 be 1 if path ¢ € @ is open and y;, be 1 if facility j,. € V;.
is open, 0 otherwise. The MUpLP can be formulated as

k
(SF) max  n—Y > fiu,

s.t.

r=1 j'rEVr

n<h(S)+ Y p(S)zg SCQ (2)
qeQ\S

Z quMTyjy- j’r‘e‘/’;”7r:]-7”'7k (3)
q€Q:jreq

Zy]rng 7":1,,]{7 (4)
Jr€Ve
g €{0,1}  q€Q (5)

yjre{oal} Jr€Vey =1,k (6)

where, M, = min{p1, |Q|/V;} are sufficiently large values for

r=1,--- k.



A Submodular MILP Formulation

Constraints (2) can be written as

ni S Ciqt + Z(Ciq — Ciqt)erq 1 E I, t= 0, s |Q| — 1,
q€Q

N
(V]
)



A Submodular MILP Formulation

Constraints (2) can be written as
7' < Cigy + Z(Ciq - Ciqt)erq iel, t=0,---.|Q[ -1,
q€Q

And since we assumed that c¢;j,...;, = ¢ijy + -+ ¢j,_,j, = 0, we
can add the valid cut

qu < p1.

q€Q



Computational Results

Using CPLEX 12.6.1 we compare the submodular formulations for the
MpMP and for the MUpLP with three previously presented formu-
lations. A Path-based formulation (PBF, Aardal et al., 1999), an
Arc-based formulation (ABF, Aardal et al., 1996; Gabor and Om-
meren, 2010) and a Flow-based formulation (FBF, Kratica et al., 2014).

SGM | SGM | Avg.

k=2 | k=3 | k=4 ||| =500 | |I|=1,000 | |[I|=1,500 | [I|=2,000 | cap | Total | sec | nodes | %gap

SFD | 36/39 | 22/25 | 12/12 | 16/16 37/37 12/16 2/4 | 21/21 | 70/76 | 346 | 13.44 | 1.24

FBF | 28/39 | 18/25 | 11/12 | 13/16 33/37 6/16 2/4 21/21 | 57/76 | 10.54 | 13.70 | 3.19

ARB | 28/39 | 14/25 | 6/12 | 13/16 27/37 4/16 1/4 | 19/21 | 48/76 | 46.91 | 0.14 | 0.01
PBF | 35/39 | 8/25 | 0/12 | 8/16 24/37 6/16 2/4 | 15/21 | 43/76 | - - -

Greedy | 17/39 | 8/25 | 6/12 | 6/16 20/37 4/16 1/4 | 11/21 | 31/76 | 0.00 | - 1.33

Table : Summary of the computational results for the MpMP.

SGM | SGM | Avg.

k=2 | k=3 |k=4][I|=500 | [I|=1,000 | |I|=1,500 | [I|=2000 | cap | MUFLP | Total | sec | nodes | %gap

SFML | 29/36 | 15/25 | 9/12 12/16 31/37 9/16 1/4 16/21 10/20 53/73 | 68.84 | 440.64 | 4.41

FBF 18/36 | 14/25 | 8/12 13/16 29/37 2/16 0/4 21/21 14/20 44/73 | 91.70 | 103.2 7.76

ARB | 25/36 | 16/25 | 5/12 | 13/16 20/37 4/16 14 | 21/21| 20/20 | 47/73 | 7964 | 037 | 0.01
PBF 28/36 | 6/25 0/12 7/16 23/37 4/16 0/4 15/21 12/20 34/73 - - -

Greedy | 1/36 | 0/25 | 0/12 | 0/16 1/37 0/16 0/4 | 0/21 | o/20 | 2/73 | 0.00 5.88

Table : Summary of the Computational Results for the MUpLP.
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(a) T={11,12,22} and S = {11,25} (b) TU {21} and SU {21}

Vertex representation of the MUFLP

v(T) =1,v(T'U{21}) = 100 and po, (T') = 99
v(S) =1, v(SU{21}) =1 and p2,(S) = 0.



B

1,\ 2\ JANS 2\ /1\‘\' 2\
(a) (b) (c)
Path-allocation representation of the MUFLP
(a) T ={(11,12), (11,22)} and S = {(11,22)}

(b) T = {(117 12)7 (11’22)7 (217 12)} and S = {(11722)7 (21’ 12)}
() T'={(11,12), (11,22), (21,22)} and § = {(11,22), (21, 22)}
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Proposition

The greedy heuristic for the MUpLP can be executed in
O (p1|Vi| (|V|log |V | + E + |I|)) time.

Proof: At iteration ¢ the subset Ay« (t) C N'=! can be efficiently
identified by solving a series of shortest path problems as follows. We
consider the auxiliary directed graph Gt = (V't, A?), where

At ={(i,j):i€eV} jeVi ,r=1,....,k—1}. For each a € A", we
define its length as wj, .., = fj, 1, — Cjrjrss if Jry1 ¢ R and

W), g1 = —Cj jrps if Jry1 € R, This operation takes O(|E|) time. We
then compute a candidate path ¢, and its associated subset A,(¢),
associated with each facility j € V; \ RY by solving a shortest path
problem between j and all nodes in Vj,. This can be done in
O(|V]log |V |+ |E|) time using the Fibonacci heap implementation of
Dijkstra’s algorithm (Ahuja et al., 1993). Finally, we evaluate
pa,w((S,R)!™1) for each candidate path ¢. This takes O(|I]) time.
Therefore, each iteration of the algorithm takes a total of

O(IVi| (|V]log|V |+ E + |I])) time. Given that there are at most p;
iterations in the algorithm, the result follows.
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Property 1:
Under Assumption 1, there exists an optimal solution to the
MUpLP in which every open facility at level r is assigned to
exactly one facility at level » 4+ 1, for r = 1,...,k (i.e. coherent
structure).

Property 2:

Under Assumption 1, there exists an optimal solution to the
MUpLP in which at most p; paths are used, i.e. |S| < p;.



Consider the polyhedron X defined as

{(77,%?/17 T 7yk) -n S h(S) + Z pq(S)ﬂjq, VS g Q,
q€Q\S

z € {0,119 y, € {0,131V e R},

where the binary variables x, can be interpreted as x4 = 1 if the
path g € @Q is open and 0 otherwise, and ¥, corresponds to the
incidence vector for each level r of the facilities that are open.

Proposition

Let T C Q, N.(T) CV, for allr, and (n, 2%, y¥, - ,y,{) where
Tyl -yl are the incidence vectors of T and N,(T),
respectively. Then, (n,zT,yl, - ,yl) € X if and only if

n < h(T).



Also, note that since h(S) is the sum of |I| submodular set functions,
one for each i € I, we can replace the objective function n by » ;. 1"
and constraints (2) with

N <h(S)+ Y pi(S)x, i€l SCQ, (7)
qEQ\S

where p}(S) = h'(S U {q}) — h*(S). Moreover, most of these inequal-
ities are redundant. First, note that for S C @ and ¢ € I given, the
right-hand side of their associated constraint (7) does not change if the
summation is taken over all ¢ € @, since pé(S) =0 for ¢ € S. Also,
h'(S) = cis, ... s, for some sy, , s, € S. For simplicity, we write ¢;s
for s € S C Q. Then, pr(S) = ciq — Cis if cig > cis or pi(S) = 0 if
Ciq < ¢is. For any S, its associated constraint (7) can thus be written
as
771 S Cis + Z(ciq - Cis)+xq7
q€Q

for some s € S and x* = max {0, x}. Therefore, if for each i € I we
consider the ordering 0 = ¢;q, < Cigy < -+ < Cig g, WE may select only
the sets S, = {¢} with ¢ = qo,--- ,¢|g|—1 in constraints (7).
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|

Proposition

The MpMP can be formulated as

maximize Z ni
i€l
subject to (3) — (6)

' < cig, + Z(Ciq —cCig)txg i€, t=0,---,1Q| «8)
q€Q

Proof:

Since constraints (8) are a subset of constraints (2), we only need to
show that if (¢,2T,yT) does not satisfy constraints (2) (i.e ¢ > hi(T)
for some 7, by Proposition 3.2) for a given T C @, then (¢, 27, y7) is
also infeasible with respect to constraints (8). Thus, suppose

h{(T) = maxer cig = then the associated ¢ inequality (8)
would be

<CA +Z gg;z;:c». +c:. —c = C: :hl(T),

— qt—1 “h 1 1qt—1 1qt 1qt—1 1qt
q€Q

zq’

which confradicte 77~ lﬁ(’m and the rectilt fallawra



A Path-based Formulation

(PBF) max

k
> D cimia =Y D fivs,
i€l geQ r=1j,.€V,
Saig=1 el

q€Q

Z Tig Ly, t€l, jreV,, r=1,---k
qE€Q:jr€q

Zyjrépr r=1,---,k
j‘)"e‘/’!‘

xquO 1€l qEQ
v, €{0,1} 4. €V, r=1,--- k.

(Aardal et al., 1999)



An Arc-based Formulation

k—1 k
(ABF) maximize E E Cijy Tijy + E E g CabZiab — E E Fir
i€l j1€V i€l r=1 (a,b)EVyr X Vyj1 r=1jr€Vy
subject to E Tij, =1 el
Jj1€VL
E Ziagb = Tia 1 €1, a€Vy
beVy

Z Ziab = Z Zivg 1ET, a €V, r=2,-+ k-1
bEVrt1 VeV,

Tijy Syjl 1 €1, j16V1

Z Ziab < Yb iel, beVir=2,---,k

a€Vy_1

Zy]‘TSPT r=1,---,k

Jr€Vr

Zij; 20 ,2i06 >0 i €I, j1 €V, (a,b) € Vi X Vi
yi, €{0,1}  jrE€Ve, r=1, k.

(Aardal et al., 1996: Gabor and Ommeren, 2010) 39 /29



A Flow-based Formulation

k k
(FBF) maximize Z Z Z CabZabr — Z Z fjryjr

r=1a€Vyiy bEV, r=1j.€V,
subject to Z Zavo = 1 acl

beV;

Z Zabr—1 = Z Zbar @ E€E Ve, T=1,--- k—1

bEV,_1 bEV, 11

Zabr < MYp aGVT+17b€‘/T r:L...yk

Zij-ﬁpr r=1---k

Jr€Vr

szO i € Vig1, jGVhr:O’...7k
yjr€{071} erVr, 1":1,-”7]{;.

(Kratica et al., 2014)
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