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Introduction/Examples

Example: Generation/Transmission Capacity Expansion

Given candidate generators (sizes/locations)
and transmission lines
@ Which to open to minimize capacity
expansion and operating costs to meet
demands?
Discrete decisions:

@ Select generator/transmission line or
not

Uncertainty:

@ Future demands by location,
weather /renewable yield
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Introduction/Examples

Example: Deterministic Model

Simplified generation expansion only model (ignoring transmission):
Candidate generators: G, Demand locations: J

Fixed cost f;, capacity C; for generator i € G

Load d: for j € J

x;: Binary choice for generator opening decisions

yij: Amount of demand at location j met from facility /

zi: Load shed at location j

min Y " fixi+ > > ciyi+ Y bz

ieG ieG jeJ jed
st. Y yjt+z=d VjeJ
ieG
Y yi<Cxi VieG
jed

xi €{0,1},y; >0 VieG,jed
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Introduction/Examples

Two-stage Stochastic Optimization

What if capacity/demands are random?

Classic two-stage framework

1. Choose here-and-now decisions (aka first-stage)
= Observe random variables

2. Make recourse decisions (in response to observed random
variables, aka second-stage)

Goal: Choose current decisions to minimize immediate cost plus expected
value of cost of “best response” decisions

@ Can also consider risk-averse objectives, but we'll ignore that today

Must determine which decisions are here-and-now and which are recourse
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Introduction/Examples

Example: Stochastic model

Load D;: Random load for j € J

Capacity C;: Random capacity for i € G

x;: Binary choice for generator open decisions (here-and-now)

yij: Amount of customer j demand met from facility i (recourse)
zj: Amount of customer j demand met that is not met (recourse)

min fo,+]E[Q(x D, C)]

x€{0,1}¢

Q(x,D,C) := min ZZCUyU—i-ZpJZJ

yz>
ieG jed jed
st. Y yj+z>Dj VjieJ
ieG
Y yi<GCx VieG
jed
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Introduction/Examples

General Model

Two-Stage Stochastic Mixed Integer Program (SMIP)

min ¢ x + E[Q(x,&)]
st. Ax > b
x € R x Z~”

where £ = (g, h, T, W) and

Q(x,€) = min q'y
st. Wy =h— Tx
y eRP x Zf?

o x: first-stage decision variables
@ y: second-stage decision variables

@ Sometimes assume ni, pi, Ny, OF Py are zero
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Introduction/Examples

What makes SMIP hard?

Stochastic integer programming combines challenges from Stochastic
programming and Integer Programming

Stochastic programming challenges
@ Evaluating expectation

@ Huge size even with finite scenario approximation

v

Integer programming challenges

@ Huge number of discrete options

@ Weak relaxations can lead to huge enumeration trees

7/52



Introduction/Examples

Tutorial Overview

@ Sample Average Approximation (SAA) for approximating expected
value (very brief!)
@ How to solve the SAA approximation

o Deterministic equivalent form
o Integer programming methdology background
e Benders cut based methods

@ Recent developments
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Sample average approximation

First Challenge: Evaluating Expected Value

Two-Stage Stochastic Mixed Integer Program (SMIP)

min ¢ x + E[Q(x, &)]
st. Ax > b
x € R x Z&
High-dimensional &:
e Evaluating E[Q(x, £)] challenging even for a single fixed x
@ Need approximation at many values of x
Simple idea: Sample average approximation
o Let&®, s=1,...,5 be a Monte Carlo sample of £
@ Use sample average to approximate expected value

E[Q(x,£) ZQ(X &)

Sample average approximation = Determlnlstlc, but very large-scale

optimization model
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Sample average approximation

Approximating Expected Value

Key question: How many scenarios required for “good approximation”?
@ Significant research into this
[Mak et al., 1999, Shapiro and Homem-de-Mello, 2000,
Ahmed and Shapiro, 2002, Kleywegt et al., 2002]
@ Roughly: Achieving ¢ accurate solution requires O(ny/€?) scenarios
@ Good news: Required number grows “mildly” with number of decision
variables and random variables

@ Bad news: Poor dependence on €

SAA enables solving SMIP problems to “modest accuracy” I

Important SAA implementation details
@ After obtaining a solution from SAA problem, must evaluate on
indepdendent sample for valid objective estimate

@ Multiple SAA problems need to be solved to obtain statistical
estimate of optimality gap
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Solving Finite Scenario SMIP

SAA = Finite Scenario SMIP

Scenarios: &° = (qs, hs, Ts, Ws), fors=1,...,S

S
1
H T s
min ¢ x—i—SsE_l Q(x,&°%)
st. Ax > b
x € R x 7%

where

Q(x,£°) = min g y
s.t. Wsy = hg — Tsx
y € R? x Zf?
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Solving Finite Scenario SMIP

SMIP = Large-scale structured MIP

First option for solving a SMIP with finite scenarios

Extensive form (deterministic equivalent) of an SMIP

)
1
T T
min ¢ x + SSE 1(qs) Vs

st. Ax > b
Tex +Wsys=hs, s=1,...,5
x € R x Z”
ys€RPxZP2, s=1,...,§

Give this to your favorite MIP solver: Gurobi, CPLEX, Xpress, SCIP,...
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Solving Finite Scenario SMIP

Example: Stochastic generator expansion

) S
LIDSEEED I DL VS D DI L?

ieG s=1ieG jeJ s=1 jeJd
st. Y yp+2zs>dg, jEJs=1,....S

ieG

Zy,-jsng,-x,-, ieG,s=1,...,5

jed

X,'E{O,l}, iel
stZOaYIjSZO, ieG,jelds=1...,5
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Solving Finite Scenario SMIP

Solving via Deterministic Equivalent Form

Advantages
o Straightforward to implement

@ State-of-the-art MIP solvers are able to solve impressive size problems
@ This is the best approach for many problems!

Limitation

@ Size can still become too large
Idea: Decomposition algorithms — solve sequence of smaller problems

@ To understand these, we need to know a little integer programming
methodology
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Integer Programming Methodology Branch-and-bound

Branch-and-bound

Basic idea behind most algorithms for solving integer programming
problems

@ Solve a relaxation of the problem
e Some constraints are ignored or replaced with less stringent constraints

@ Gives a lower bound on the true optimal value
o If the relaxation solution is feasible, it is optimal

o Otherwise, divide the feasible region (branch) and repeat

15/52



Integer Programming Methodology Branch-and-bound

How long does branch-and-bound take?

Simple approximation:

Total time = (Time to process a node) x (Number of nodes)

Both can be very important:
@ For very large instances (as in stochastic programming), solving a
single relaxation can be too time-consuming

@ Number of nodes can grow exponentially in number of decision
variables if do not prune often enough

Keys to success

@ Solve relaxations fast (enough)

@ Obtain strong relaxations so that can prune high in tree
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Integer Programming Methodology = Valid inequalities/improved formulations

Valid inequalities

Let X ={x Rl :Ax < b,x; € Z,j € J}

Definition

An inequality mx < mg is a valid inequality for X if mx < g for all x € X.
(mr € R", mp € R)

e Valid inequalities are also called “cutting planes” or “cuts”

@ Goal of adding valid inequalities to a formulation: improve relaxation
bound = explore fewer branch-and-bound nodes

Key questions
@ How to find valid inequalities?

@ How to use them in a branch-and-bound algorithm?
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Integer Programming Methodology = Valid inequalities/improved formulations

Finding Valid Inequalities

Generator Expansion Example

@ x; = 1 if generator i is open, y;; = demand at location j served from
generator i

@ Formulation we used earlier:
Zyy's < Gixi, ViegG
jed
o Valid inequalities:
Yijs < min{dsj, Cs,'}X,', Vi e I,j eJ
@ Set of integer feasible points satisfying these are the same
@ But many fractional points that satisfy original formulation do not

satisfy the redundant constraints
Finding valid inequalities in general
@ HUGE topic of research = Power of commercial MIP solvers
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Integer Programming Methodology = Valid inequalities/improved formulations

Branch-and-cut

At each node in branch-and-bound tree
@ Solve current LP relaxation = X
@ Attempt to generate valid inequalities that cut off X
© If cuts found, add to LP relaxation and go to step 1

Why branch-and-cut?
@ Reduce number of nodes to explore with improved relaxation bounds

e Add inequalities required to define feasible region (relevant for
Benders for SMIP)

This approach is the heart of all modern MIP solvers
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Cut Based Methods

Case 1: SMIP with Continuous Recourse

S
min ¢’ x + Z psts
s=1

st. Ax > b
0s > Qs(x), s=1,...,5
x € R x Z&
where fors=1,...,5
Qs(x) = min g/ y
s.t. Wsy = hs — Tsx
y € R? x R7?

Qs(+): Piecewise-linear convex function

@ Supporting cuts via dual solution of the second-stage LP
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Cut Based Methods

Method 1: Basic Benders decomposition

s
(MP)fP ; ngixn cTx+ Zpsﬁs
’ s=1

st. Ax > b,x € R} x ZF!
695 > ds,t+Bs,tX7 S = 1,...,5,

(SP)* : Qs(X) := n}/in quyS

s.t. Wsys > hg — TsXx
y € R

o Converges after finitely many iterations

@ Main problem is a mixed-integer program

LB

Main Problem

S1nd
X

Subproblems

uB
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Cut Based Methods

Deriving the Benders cuts

Under mild assumptions (so strong duality holds):

Qs(%) = min qJ y
st. Wy > hs — TR
y € R? x R??
= max 7' (hs — T.R)
st Ws < gs
= max {7 hs — 7' Tek : 7 € EXT(MN,)}

where EXT(I1s) is the finite set of extreme points of scenario s dual
feasible region

o If 7 is optimal dual solution at X, add Benders cut:
Os > 7' hs — 7 Tex
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Cut Based Methods

Basic Benders algorithm

Solving the main MIP can become very time-consuming
@ Tends to become more difficult as more cuts are added

@ Unlike an LP, MIP main problem cannot be very effectively
warm-started = Significant “redundant” work

Alternative: Branch-and-Benders cut

Add Benders cuts as needed during a single branch-and-cut process.
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Cut Based Methods

Method 2: Branch-and-Benders cut

Initalize Benders main problem with Benders cuts

o E.g., solve the LP relaxation via Benders and keep cuts

Begin branch-and-cut algorithm. At each node in the search tree:
@ Solve LP relaxation = (&,0)
o If LP bound exceeds known incumbent, prune.

o If & is integer feasible: (X,) might not be feasible!

e Solve scenario subproblems to generate Benders cuts

o If (A5, %) violates any Benders cut, add cut to LP relaxation and
re-solve.

o If X not integer feasible:

e Optional: Solve scenario subproblems and add Benders cuts if violated
o Else: Branch to create new nodes

Cuts added when X is integer feasible are known as lazy cuts in MIP
solvers (add via cut callback routine).
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Cut Based Methods

Example: Generator expansion

Example data:
@ Three possible generator and four demand locations
e Fixed costs: f = [120,100, 90]
e Capacity (deterministic): C = [26, 25, 18]
e Two equally likely scenarios: di = [12,8,6,11], d» = [8,11,7, 6]
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Cut Based Methods

Example: After solving main LP relaxation

Main problem LP relaxation

min 120x; + 100x> 4+ 90x3 + 1/2(91 + 92)
s.t. 01 > 1140 — 728x7 — 675x> — 468x3
01 > 179 — 52xy — 72x3

0> > 990 — 728x1 — 675x> — 468x3
(92 Z 124 — 36X3

0<x<1,i=1,2,3

Optimal solution: % = (0.5,0.76,0.33), f = (129, 112)

Optimal value (lower bound on SMIP): 286.5
@ Subproblems yield no more violated Benders cuts

@ Solution is optimal to the LP relaxation
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Cut Based Methods

Example: Branch-and-cut phase

Current main problem

min 120x; 4+ 100x> 4+ 90x3 + 1/2(91 + 92)
s.t. 01 > 1140 — 728x; — 675x, — 468x3
91 > 179 — 52X1 - 72X3

B> > 990 — 728x; — 675x0 — 468x3
0> > 124 — 36x3

0<x<1+=T,2,3
x € {0,1},i=1,2,3

Load this (partial) formulation to the MIP solver and start solution process

o Let’s first suppose MIP solver adds no cuts of its own

@ It will be ready to branch (LP relaxation already solved)
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Cut Based Methods

Example: After some branches

min 120x; + 100x2 + 90x3 + 1/2(61 + 62)
s.t. 01 > 1140 — 728x; — 675x> — 468x3
(91 Z 179 — 52X1 — 72X3

92 Z 990 — 728X1 — 675X2 — 468X3
0> > 124 — 36x3

0<x<1,i=1,23

Node 3: Fixxy =1, xo =0 Node 4: Fix x1 =1, xo =1
Optimal solution: X = (1,0,0.42), | Optimal solution: % = (1,1,0),
2 =3b5.2 2=23455

Node 4 yields integer feasible solution!
@ But (%, 0) is not necessarily feasible! (if s < Qs(X) for some s)
@ We MUST check if there are any violated Benders cuts -



Cut Based Methods

Scenario subproblems at Node 4

Subproblems with X = (1,1, 0):

min 37, ;}:1 Cijyij + Z;":l 30z
st 30 Y+ 2= dy, V)
Sy <26-1
Yy <25-1
vy <1840
yi=>0,z>0

min 3274 Y05 cpyi + 1 307
Sty itz =y, V)
Sy <26-1
Sy <25-1
S,y <18-0
yi=>0,z>0

Yields violated Benders cut:

01 > 141 — 36x3

Does not yield a violated Benders
cut

Upper bound (because X is integer feasible!):
S 6%+ S0, ps Qs (%) = 220 + 1/2(141 + 124) = 352.5
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Cut Based Methods

Branch-and-cut results

Algorithm eventually terminates after 8 nodes
@ Not very efficient for a 3-variable binary problem!

What went wrong?
@ Poor LP relaxations!

What to do?

@ Add Benders cuts at fractional LP solutions

@ Use integrality to add stronger cuts (valid inequalities not implied
by LP relaxation)

Two options for using integrality to add stronger cuts
@ Generate cuts directly in the main problem
o Generate cuts in the subproblems
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Cut Based Methods

Main problem cuts

Derive valid inequalities for the mixed-integer set:

{(x,0) : Ax > b,
695 2 ds,t+BS,tX7 S = 1,...,5,
x €RY x 27,0 € R®}

where the constraints in second row are some Benders cuts

e E.g., split cuts, mixed-integer rounding, Gomory mixed-integer
cuts,.. .,

o Ideally, would have all Benders cuts defining {(x, ) : s > Qs(x)} but
in general too many to enumerate
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Cut Based Methods

Main problem cuts: Help the MIP solver help you

Main Problem Cuts

Derive valid inequalities for the mixed-integer set:

{(x,80) : Ax > b,
eds > dst+ Bsx, s=1,...,5,
x €RY x ZF* 0 € R®}

where the constraints in second row are some Benders cuts )

e MIP solvers will (try to) do this for you if Benders cuts are given to
the solver as part of the formulation!
@ Facility location example: Gurobi improves root node relaxation from
286.5 to 326.8 (compared to 352 opt)
Many MIP solvers do not derive cuts based on cuts you add in a callback
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Cut Based Methods

Main problem cuts: Help the MIP solver help you

Main Problem Cuts
Derive valid inequalities for the mixed-integer set:
{(x,0) : Ax > b,
695 2 ds,t + Bs’tX, s = ]., ce ,S,
x €RY x 27,0 € R®}

where the constraints in second row are some Benders cuts

Takeaway

Phase 0 (solve LP relaxation with Benders, include cuts in formulation)
can be very important for effective branch-and-cut implementation

@ Don't just add cuts in a callback
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Cut Based Methods

Cuts in the subproblems: Help yourself!

Use valid inequalities to obtain stronger LP relaxation of each scenario
mixed-integer set:

Xs i ={(x,y) : Ax > b, Tex+ Wy = hg
x e R x ZF', y e R? x ZF?}

v

@ NB: So far, we have only seen a convergent algorithm for the case y
IS continuous
@ But subproblem approach for generating cuts is valid and useful for y
mixed-integer
@ See: [Sen and Higle, 2005, Sen and Sherali, 2006, Gade et al., 2014,
Zhang and Kiiclikyavuz, 2014, Ntaimo, 2013]
Cuts generated for a single scenario = Can still apply Benders

decomposition
33/52



Cut Based Methods

S

(MP)iP : ryixn ch—i—ZpsHs

s=1

Cuts in subproblem

st. Ax > b,x € R x ]RT
eds > ds,t + Bs,txa Vs,
0 € R®

Benders Cuts

Subproblem?®
(SP)* : Qs(X) := myin ql ys

s.t. Wsys > hs — TX
P2
y € RI? x RY:
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Cut Based Methods

Cuts in subproblem

S
P T
(MP);" : min ¢ x—i—Zpsﬂs
s=1
st. Ax > b,x e R} x R?!
ets > ds,t + Bs,txa Vs,

0 € R®
(SP)* : Qs(X) := n}]/in quys

s.t. Wsys > hg — TsXx

‘Cs}/s > gs — Ds)?‘

n P
y € RI? x RE?

Add cuts to (SP)*, even if it's originally an LP
(p2 =0)

Benders Cuts
X

Subproblem?

‘)I

Cuts

<>

I (

Separate cuts
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Cut Based Methods

Cuts in the subproblems: Help yourself!

How to generate valid inequalities for each scenario mixed-integer set?

Xs ={(x,y) : Ax > b, Tex + Wsy = hs
x e R x ZF' y e R? x ZF?}

Generating such cuts might require expertise in general integer
programming cuts

@ Split cuts, Gomory mixed-integer cuts, Chvatal-Gomory cuts,...
But it also might not...
@ Use problem-specific cuts, or a better formulation

e E.g., facility location problem

35/52



Cut Based Methods

Facility location: Subproblem cuts

Feasible region for a scenario s:

{(,y.2): > yj+z>dg, jeJ

i€eG

Zy,-j < C,'SX,', ieG

Jjed

yij >0,z >0, ieG,jed

x; € {0,1}, ieG }

Recall: Valid inequalities

Yij < min{dsj, Cs,'}X,', i € G,_] eJ

Two options for using them (because there is a “small” number of them)
@ Directly add them to the scenario subproblem formulations v/

@ Add them as cuts when solving scenario subproblems
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Cut Based Methods

Branch-and-cut again

Initialization phase: Solve new LP relaxation via Benders

Iteration 1: Main linear problem (no € variable yet)

min 120x; + 100x> + 90x3
st. 0<x<1,i=1,2,3

Optimal solution: X = (0,0, 0)
Optimal value (lower bound on SMIP): 0
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Cut Based Methods

Example: lteration 1

Subproblems with x = (0,0, 0):

min Zzzl 4 CiYii + Yoy 30z | | min Zzzl 1 Gy + 2130z
s.t. 22:1 Yij+zj=diy, ¥ s.t. 22-1:1 Vi +2zj = daj, Vj
Zﬁzlyys%-o Z{lzly,-jg%-o
> 1y <18-0 Sty <180
y11 <12-0 y1i1 <8-0
y34 <11-0 y34 <6-0
yi>0,z>0 vi >0,z; >0

Valid inequalities in Benders subproblem =- Better cuts in main problem. ..
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Cut Based Methods

Example after root LP solved

Final main problem LP relaxation

min 120x; + 100x> + 90X3 + 1/2(91 + 92)
s.t. 01 > 1140 — 923x7 — 922x, — 864x3

(92 Z 990 — 794X1 — 812X2 — 758X3

0<x<1,i=1,2,3

Optimal solution: % = (0.56,0.93,0), § = (190.3,152.4)
Recall: Original LP relaxation bound = 286.5

@ Bound using this formulation: 332.4 (recall opt = 352)
e After Gurobi cuts on this: 350.5
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Cut Based Methods

Recap: SMIP with continuous recourse

Two general approaches:

© Direct Benders: Sequence of MIPs

@ Branch-and-cut adding Benders cuts (and others) in tree
Which is better?

1. Sequence of MIPs 2. Branch-and-cut
@ Easy to implement @ More difficult to implement
@ Tends to solve fewer scenario @ Single tree eliminates
subproblems redundant work
@ Main MIP problems may become @ Allows exploiting
bottleneck subproblem cuts, e.g.,
@ Takes full advantage of MIP solver | based on problem structure |

My advice: Try simpler option first!
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Cut Based Methods

Mixed-integer recourse

Mixed-integer recourse

Stochastic MIP

S
min ¢’ x + Z psOs
s=1

st. Ax > b

0s > Qs(x), s=1,...

ny p1
x € Ry X Z7

.S

vV

What goes wrong with Benders approach with mixed-integer recourse?

Where fors =1,...,S

Qs(x) = min qg—y
s.t. Wsy = hs — Tsx
y € R? x ZF?

@ Qs(x): Value function of a mixed-integer program

@ Benders cuts (including strengthened with subproblem cuts) still valid

@ But main problem constraints 6s > Qs(x) cannot be enforced with

Benders cuts alone!
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Cut Based Methods Mixed-integer recourse

Special methods for many cases

Key ingredient in each case

Use cuts/branching to enforce constraint 6s > Qs(x) for x feasible to
first-stage problem

@ All can be improved using main problem cuts and subproblem cuts
Pure binary first stage:
o Integer L-shaped cuts: [Laporte and Louveaux, 1993]
@ Split cuts, transfer from one scenario to another:
[Sen and Higle, 2005]
Gomory cuts: [Gade et al., 2014]
Fenchel cuts: [Ntaimo, 2013]
Coordination branching: [Alonso-Ayuso et al., 2003]
Lagrangian cuts: [Zou et al., 2019]

Pure integer first and second-stage:
e Gomory cuts [Zhang and Kiigiikyavuz, 2014]
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Cut Based Methods Mixed-integer recourse

Other cases (cont'd)

Mixed binary in first and second-stage:
e Lift-and-project (split) cuts: [Carge, 1998, Tanner and Ntaimo, 2008]
@ Reformulation linearization technique: [Sherali and Zhu, 2007]

e Disjunctive cuts from branch-and-cut tree: [Sen and Sherali, 2006]

Pure integer second-stage:

@ Reformulation, integer subproblems, specialized branching:
[Ahmed et al., 2004]

General mixed-integer both stages:

@ Scaled cuts (Benders main problem cuts included in scenario
subproblems): [van der Laan and Romeijnders, 2020]

43/52



Implementation Variants/Tips

Multi-cut vs. Single-cut Benders

Benders algorithm described: Multi-cut
@ Objective function approximation: > ¢ psfs
@ Benders cuts generated added for each 6 separately

Os > 7] hs — 7] Tox
Alternative: Single-cut

@ Objective function approximation: ©

@ Benders cuts obtained by aggregating Benders cuts across all
scenarios
© > ps(7] hs — 7] Tex)
seS
Comparison
@ Multi-cut tends to converge in fewer iterations
@ Single-cut keeps size of main problem small
@ Single-cut may be faster if solving scenario subproblems is fast and
main problem is large
Hybrids are also possible by working with a partition of scenarios 44 /52



Implementation Variants/Tips

Solving the “Phase 1" LP relaxation problem

What to do if convergence of Phase 1 is slow?

@ Phase 1: Add Benders cuts until LP relaxation is solved

Use the level algorithm or a regularized algorithm (keeps iterates from
moving “too far” in consecutive iterations)

@ Can be particularly helpful if using single-cut Benders algorithm

Use an alternative cut-generating problem

@ Better choice of cuts to add can lead to faster convergence
e Example: [Fischetti et al., 2010]

@ Especially useful for problems requiring feasibility cuts
@ Restricted to multi-cut version
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Recent work

Accelerated generation of Lagrangian cuts

Lagrangian cuts: valid for convex hull of single-scenario projected problem

E°={(x,0s) e X xR: Ax > b,0s > Qs(x)}
Definition:

Qi (m,mo) = mxin{TrTx + moQs(x) : Ax > b,x € X}
= rgi}p{w—rx +70(q°) y: (x,y) € K}
Valid inequality for conv(E®) for any m € R™, mp € R:
7' x + mohs > Qz (m, mo)

Given relaxation solution ()?,GAS), a Lagrangian cut is found by solving

rp%{Q;‘(w, m) — 7 R —mg Os ¢ (m,m0) € M}

where [17 is a suitably normalized set of possible cut coefficients
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Recent work

Lagrangian cuts (cont'd)

How to solve the cut separation problem?
max{Q (m,m0) — 7 & —mg Os : (m,m0) € M}

Cutting plane algorithm!
@ Replace Q}(m,mp) with piecewise-linear concave over-estimation:

Qi (m,m0) = min{r ' + mQs(X) : X € K¥}

@ Solve relaxed cut gen problem — (7, 79) + Upper bound on max cut
violation

@ Solve subproblem to evaluate Q} (7, 7p):
r)r(1iyn{7ArTx +#0(q°) Ty : (x,y) € K*}

e Add optimal solution X to K* to update (:);‘
@ Repeat until an “approximately most violated” cut is found
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Recent work

Lagrangian cuts (cont'd)

Cutting plane algorithm challenge
e Convergence can be slow (solve many IP subproblems to generate a
single cut)

Idea: Heavily restrict cut coefficient space
@ [Chen and Luedtke, 2022a]: require 7 to be a linear combination of a
small number of previously generated Benders cut coefficients
@ Low-dimensional space = Significantly faster convergence
(empirically)
@ With good choice of restriction, loss in cut quality not too drastic
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Recent work

Sparse multi-term disjunctive cuts

Binary special case:
E® ={(x,0s) € {0,1} xR : Ax > b,0s > Qs(x)}
For I C {1,...,n1}, consider multi-term following relaxation:

ESC |J {(x0:)€[0,1]™ xR: Ax > b0, > Qs(x), 3 = x}
xc{o,1}/

Union of 2!l polyhedra

[Balas, 1979]: Valid inequalities for union of polyhedra

Multi-term disjunctions can yield stronger cuts than standard (e.g.,
split) approaches

Complexity of cut generation grows significantly with |/|: in practice
usually /] =2
o [Perregaard and Balas, 2001]: Extend computationally but still |/| < 4
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Recent work

Sparse cuts

“Definition”:
o Acut § > a'x+ 3 is sparse if the number of nonzeros in the
coefficient vector « is small
Advantages of sparse cuts
@ Impoves speed of re-solving of linear programs after adding cuts

@ [Dey et al., 2018]: Provide conditions when sparse cuts approximate
relaxation obtainable by dense cuts

Can we generate sparse multi-term disjunctive cuts efficiently?
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Recent work

Sparse mulit-term disjunctive cuts

Summary of results from [Chen and Luedtke, 2022b]

o Goal: generate valid inequalities for multi-term disjunction defined by
/

Restrict support of the generated inequalities to variables in /| = Sparse I

Key result:

o Generating such a valid inequality can be accomplished by solving 2!’!
linear programs once, then solving a “cut generating linear program”
with 2/l constraints

o Makes it feasible to scale to |/| ~ 10 — 12

@ Promising numerical results for problems with “natural sparsity”
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Parting thoughts

Branch-and-Benders cuts
@ SMIP is an important application

@ But many large-scale structured MIP problems have similar structure

Work to do

@ SMIP still not “routine”, even in simplest case of continuous recourse

@ Lack of available software that integrates state-of-the-art methods

Questions?

@ jim.luedtke@wisc.edu
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