
Branch-and-Benders Cut for
Stochastic Integer Programming

Jim Luedtke

Dept. of Industrial and Systems Engineering
Wisconsin Institute for Discovery

University of Wisconsin-Madison, USA
jim.luedtke@wisc.edu

Montreal Operations Research Student Chapter Keynote
May 27, 2022

Introduction/Examples

Example: Generation/Transmission Capacity Expansion

Given candidate generators (sizes/locations)
and transmission lines

Which to open to minimize capacity
expansion and operating costs to meet
demands?

Discrete decisions:

Select generator/transmission line or
not

Uncertainty:

Future demands by location,
weather/renewable yield

2 / 52

Introduction/Examples

Example: Deterministic Model

Simplified generation expansion only model (ignoring transmission):

Candidate generators: G , Demand locations: J
Fixed cost fi , capacity Ci for generator i ∈ G
Load dj : for j ∈ J
xi : Binary choice for generator opening decisions
yij : Amount of demand at location j met from facility i
zj : Load shed at location j

min
∑
i∈G

fixi +
∑
i∈G

∑
j∈J

cijyij +
∑
j∈J

pjzj

s.t.
∑
i∈G

yij + zj = dj ∀j ∈ J∑
j∈J

yij ≤ Cixi ∀i ∈ G

xi ∈ {0, 1}, yij ≥ 0 ∀i ∈ G , j ∈ J
3 / 52

Introduction/Examples

Two-stage Stochastic Optimization

What if capacity/demands are random?

Classic two-stage framework

1. Choose here-and-now decisions (aka first-stage)

⇒ Observe random variables

2. Make recourse decisions (in response to observed random
variables, aka second-stage)

Goal: Choose current decisions to minimize immediate cost plus expected
value of cost of “best response” decisions

Can also consider risk-averse objectives, but we’ll ignore that today

Must determine which decisions are here-and-now and which are recourse

4 / 52

Introduction/Examples

Example: Stochastic model

Load Dj : Random load for j ∈ J
Capacity Ci : Random capacity for i ∈ G
xi : Binary choice for generator open decisions (here-and-now)
yij : Amount of customer j demand met from facility i (recourse)
zj : Amount of customer j demand met that is not met (recourse)

min
x∈{0,1}G

∑
i∈G

fixi + E[Q(x ,D,C)]

Q(x ,D,C) := min
y ,z≥0

∑
i∈G

∑
j∈J

cijyij +
∑
j∈J

pjzj

s.t.
∑
i∈G

yij + zj ≥ Dj ∀j ∈ J∑
j∈J

yij ≤ Cixi ∀i ∈ G

5 / 52

Introduction/Examples

General Model

Two-Stage Stochastic Mixed Integer Program (SMIP)

min c>x + E[Q(x , ξ)]

s.t. Ax ≥ b

x ∈ Rn1
+ × Zp1

+

where ξ = (q, h,T ,W) and

Q(x , ξ) = min q>y

s.t. Wy = h − Tx

y ∈ Rn2
+ × Zp2

+

x : first-stage decision variables

y : second-stage decision variables

Sometimes assume n1, p1, n2, or p2 are zero
6 / 52

Introduction/Examples

What makes SMIP hard?

Stochastic integer programming combines challenges from Stochastic
programming and Integer Programming

Stochastic programming challenges

Evaluating expectation

Huge size even with finite scenario approximation

Integer programming challenges

Huge number of discrete options

Weak relaxations can lead to huge enumeration trees

7 / 52

Introduction/Examples

Tutorial Overview

Sample Average Approximation (SAA) for approximating expected
value (very brief!)

How to solve the SAA approximation

Deterministic equivalent form
Integer programming methdology background
Benders cut based methods

Recent developments

8 / 52

Sample average approximation

First Challenge: Evaluating Expected Value

Two-Stage Stochastic Mixed Integer Program (SMIP)

min c>x + E[Q(x , ξ)]

s.t. Ax ≥ b

x ∈ Rn1
+ × Zp1

+

High-dimensional ξ:

Evaluating E[Q(x , ξ)] challenging even for a single fixed x
Need approximation at many values of x

Simple idea: Sample average approximation

Let ξs , s = 1, . . . ,S be a Monte Carlo sample of ξ
Use sample average to approximate expected value

E[Q(x , ξ)] ≈ 1

S

S∑
s=1

Q(x , ξs)

Sample average approximation ⇒ Deterministic, but very large-scale
optimization model

9 / 52

Sample average approximation

Approximating Expected Value

Key question: How many scenarios required for “good approximation”?

Significant research into this
[Mak et al., 1999, Shapiro and Homem-de-Mello, 2000,

Ahmed and Shapiro, 2002, Kleywegt et al., 2002]

Roughly: Achieving ε accurate solution requires O(n1/ε
2) scenarios

Good news: Required number grows “mildly” with number of decision
variables and random variables
Bad news: Poor dependence on ε

Conclusion

SAA enables solving SMIP problems to “modest accuracy”

Important SAA implementation details

After obtaining a solution from SAA problem, must evaluate on
indepdendent sample for valid objective estimate
Multiple SAA problems need to be solved to obtain statistical
estimate of optimality gap

10 / 52

Solving Finite Scenario SMIP

SAA ⇒ Finite Scenario SMIP

Scenarios: ξs = (qs , hs ,Ts ,Ws), for s = 1, . . . ,S

min c>x +
1

S

S∑
s=1

Q(x , ξs)

s.t. Ax ≥ b

x ∈ Rn1
+ × Zp1

+

where

Q(x , ξs) = min q>s y

s.t. Wsy = hs − Tsx

y ∈ Rn2
+ × Zp2

+

11 / 52

Solving Finite Scenario SMIP

SMIP ≡ Large-scale structured MIP

First option for solving a SMIP with finite scenarios

Extensive form (deterministic equivalent) of an SMIP

min c>x +
1

S

S∑
s=1

(qs)>ys

s.t. Ax ≥ b

Tsx + Wsys = hs , s = 1, . . . ,S

x ∈ Rn1
+ × Zp1

+

ys ∈ Rn2
+ × Zp2

+ , s = 1, . . . ,S

Give this to your favorite MIP solver: Gurobi, CPLEX, Xpress, SCIP,...

12 / 52

Solving Finite Scenario SMIP

Example: Stochastic generator expansion

min
x ,y ,z

∑
i∈G

fixi +
1

S

S∑
s=1

∑
i∈G

∑
j∈J

csijyijs +
1

S

S∑
s=1

∑
j∈J

qsj zjs

s.t.
∑
i∈G

yijs + zjs ≥ dsj , j ∈ J, s = 1, . . . ,S∑
j∈J

yijs ≤ Csixi , i ∈ G , s = 1, . . . ,S

xi ∈ {0, 1}, i ∈ I

zjs ≥ 0, yijs ≥ 0, i ∈ G , j ∈ J, s = 1, . . . ,S

13 / 52

Solving Finite Scenario SMIP

Solving via Deterministic Equivalent Form

Advantages

Straightforward to implement

State-of-the-art MIP solvers are able to solve impressive size problems

This is the best approach for many problems!

Limitation

Size can still become too large

Idea: Decomposition algorithms – solve sequence of smaller problems

To understand these, we need to know a little integer programming
methodology

14 / 52

Integer Programming Methodology Branch-and-bound

Branch-and-bound

Basic idea behind most algorithms for solving integer programming
problems

Solve a relaxation of the problem

Some constraints are ignored or replaced with less stringent constraints

Gives a lower bound on the true optimal value

If the relaxation solution is feasible, it is optimal

Otherwise, divide the feasible region (branch) and repeat

15 / 52

Integer Programming Methodology Branch-and-bound

How long does branch-and-bound take?

Simple approximation:

Total time = (Time to process a node)× (Number of nodes)

Both can be very important:

For very large instances (as in stochastic programming), solving a
single relaxation can be too time-consuming

Number of nodes can grow exponentially in number of decision
variables if do not prune often enough

Keys to success

Solve relaxations fast (enough)

Obtain strong relaxations so that can prune high in tree

16 / 52

Integer Programming Methodology Valid inequalities/improved formulations

Valid inequalities

Let X = {x ∈ Rn
+ : Ax ≤ b, xj ∈ Z, j ∈ J}

Definition

An inequality πx ≤ π0 is a valid inequality for X if πx ≤ π0 for all x ∈ X .
(π ∈ Rn, π0 ∈ R)

Valid inequalities are also called “cutting planes” or “cuts”

Goal of adding valid inequalities to a formulation: improve relaxation
bound ⇒ explore fewer branch-and-bound nodes

Key questions

How to find valid inequalities?

How to use them in a branch-and-bound algorithm?

17 / 52

Integer Programming Methodology Valid inequalities/improved formulations

Finding Valid Inequalities

Generator Expansion Example

xi = 1 if generator i is open, yij = demand at location j served from
generator i

Formulation we used earlier:∑
j∈J

yijs ≤ Csixi , ∀i ∈ G

Valid inequalities:

yijs ≤ min{dsj ,Csi}xi , ∀i ∈ I , j ∈ J

Set of integer feasible points satisfying these are the same

But many fractional points that satisfy original formulation do not
satisfy the redundant constraints

Finding valid inequalities in general

HUGE topic of research ⇒ Power of commercial MIP solvers
18 / 52

Integer Programming Methodology Valid inequalities/improved formulations

Branch-and-cut

At each node in branch-and-bound tree

1 Solve current LP relaxation ⇒ x̂

2 Attempt to generate valid inequalities that cut off x̂

3 If cuts found, add to LP relaxation and go to step 1

Why branch-and-cut?

Reduce number of nodes to explore with improved relaxation bounds

Add inequalities required to define feasible region (relevant for
Benders for SMIP)

This approach is the heart of all modern MIP solvers

19 / 52

Cut Based Methods

Case 1: SMIP with Continuous Recourse

min c>x +
S∑

s=1

psθs

s.t. Ax ≥ b

θs ≥ Qs(x), s = 1, . . . ,S

x ∈ Rn1
+ × Zp1

+

where for s = 1, . . . ,S

Qs(x) = min q>s y

s.t. Wsy = hs − Tsx

y ∈ Rn2
+ × Rp2

+

Qs(·): Piecewise-linear convex function

Supporting cuts via dual solution of the second-stage LP
20 / 52

Cut Based Methods

Method 1: Basic Benders decomposition

(MP)LPt : min
θ,x

cT x +
S∑

s=1

psθs

s.t. Ax ≥ b, x ∈ Rn1
+ × Zp1

+

eθs ≥ ds,t + Bs,tx , s = 1, . . . ,S ,

(SP)s : Qs(x̂) := min
ys

qTs ys

s.t. Wsys ≥ hs − Ts x̂

y ∈ Rn2
+

Main Problem

Subproblems

LB

UB

C
U

T
S (θ̂

, x̂
)

Converges after finitely many iterations

Main problem is a mixed-integer program

21 / 52

Cut Based Methods

Deriving the Benders cuts

Under mild assumptions (so strong duality holds):

Qs(x̂) = min q>s y

s.t. Wsy ≥ hs − Ts x̂

y ∈ Rn2
+ × Rp2

+

= max π>(hs − Ts x̂)

s.t. π>Ws ≤ qs

= max {π̄>hs − π̄>Ts x̂ : π̄ ∈ EXT(Πs)}

where EXT(Πs) is the finite set of extreme points of scenario s dual
feasible region

If π̄ is optimal dual solution at x̂ , add Benders cut:

θs ≥ π̄>hs − π̄>Tsx

22 / 52

Cut Based Methods

Basic Benders algorithm

Limitation

Solving the main MIP can become very time-consuming

Tends to become more difficult as more cuts are added

Unlike an LP, MIP main problem cannot be very effectively
warm-started ⇒ Significant “redundant” work

Alternative: Branch-and-Benders cut

Add Benders cuts as needed during a single branch-and-cut process.

23 / 52

Cut Based Methods

Method 2: Branch-and-Benders cut

Initalize Benders main problem with Benders cuts

E.g., solve the LP relaxation via Benders and keep cuts

Begin branch-and-cut algorithm. At each node in the search tree:

Solve LP relaxation ⇒ (x̂ , θ̂)

If LP bound exceeds known incumbent, prune.

If x̂ is integer feasible: (x̂ , θ̂) might not be feasible!

Solve scenario subproblems to generate Benders cuts
If (θ̂s , x̂) violates any Benders cut, add cut to LP relaxation and
re-solve.

If x̂ not integer feasible:

Optional: Solve scenario subproblems and add Benders cuts if violated
Else: Branch to create new nodes

Cuts added when x̂ is integer feasible are known as lazy cuts in MIP
solvers (add via cut callback routine).

24 / 52

Cut Based Methods

Example: Generator expansion

Example data:

Three possible generator and four demand locations

Fixed costs: f = [120, 100, 90]

Capacity (deterministic): C = [26, 25, 18]

Two equally likely scenarios: d1 = [12, 8, 6, 11], d2 = [8, 11, 7, 6]

25 / 52

Cut Based Methods

Example: After solving main LP relaxation

Main problem LP relaxation

min 120x1 + 100x2 + 90x3 + 1/2(θ1 + θ2)
s.t. θ1 ≥ 1140− 728x1 − 675x2 − 468x3

θ1 ≥ 179− 52x1 − 72x3
. . .
θ2 ≥ 990− 728x1 − 675x2 − 468x3
θ2 ≥ 124− 36x3
. . .
0 ≤ xi ≤ 1, i = 1, 2, 3

Optimal solution: x̂ = (0.5, 0.76, 0.33), θ̂ = (129, 112)

Optimal value (lower bound on SMIP): 286.5

Subproblems yield no more violated Benders cuts

Solution is optimal to the LP relaxation
26 / 52

Cut Based Methods

Example: Branch-and-cut phase

Current main problem

min 120x1 + 100x2 + 90x3 + 1/2(θ1 + θ2)
s.t. θ1 ≥ 1140− 728x1 − 675x2 − 468x3

θ1 ≥ 179− 52x1 − 72x3
. . .
θ2 ≥ 990− 728x1 − 675x2 − 468x3
θ2 ≥ 124− 36x3
. . .

((((((((((
0 ≤ xi ≤ 1, i = 1, 2, 3
xi ∈ {0, 1}, i = 1, 2, 3

Load this (partial) formulation to the MIP solver and start solution process

Let’s first suppose MIP solver adds no cuts of its own

It will be ready to branch (LP relaxation already solved)
27 / 52

Cut Based Methods

Example: After some branches

min 120x1 + 100x2 + 90x3 + 1/2(θ1 + θ2)
s.t. θ1 ≥ 1140− 728x1 − 675x2 − 468x3

θ1 ≥ 179− 52x1 − 72x3
. . .
θ2 ≥ 990− 728x1 − 675x2 − 468x3
θ2 ≥ 124− 36x3
. . .
0 ≤ xi ≤ 1, i = 1, 2, 3

Node 3: Fix x1 = 1, x2 = 0

Optimal solution: x̂ = (1, 0, 0.42),
ẑ = 355.2

Node 4: Fix x1 = 1, x2 = 1

Optimal solution: x̂ = (1, 1, 0),
ẑ = 345.5

Node 4 yields integer feasible solution!

But (x̂ , θ̂) is not necessarily feasible! (if θ̂s < Qs(x̂) for some s)
We MUST check if there are any violated Benders cuts

28 / 52

Cut Based Methods

Scenario subproblems at Node 4

Subproblems with x̂ = (1, 1, 0):

min
∑3

i=1

∑4
j=1 cijyij +

∑4
j=1 30zj

s.t.
∑4

i=1 yij + zj = d1j , ∀j∑4
j=1 yij ≤ 26 · 1∑4
j=1 yij ≤ 25 · 1∑4
j=1 yij ≤ 18 · 0

yij ≥ 0, zj ≥ 0

Yields violated Benders cut:

θ1 ≥ 141− 36x3

min
∑3

i=1

∑4
j=1 cijyij +

∑4
j=1 30zj

s.t.
∑4

i=1 yij + zj = d2j , ∀j∑4
j=1 yij ≤ 26 · 1∑4
j=1 yij ≤ 25 · 1∑4
j=1 yij ≤ 18 · 0

yij ≥ 0, zj ≥ 0

Does not yield a violated Benders
cut

Upper bound (because x̂ is integer feasible!):∑
i fi x̂i +

∑
s psQs(x̂) = 220 + 1/2(141 + 124) = 352.5

29 / 52

Cut Based Methods

Branch-and-cut results

Algorithm eventually terminates after 8 nodes

Not very efficient for a 3-variable binary problem!

What went wrong?

Poor LP relaxations!

What to do?

Add Benders cuts at fractional LP solutions

Use integrality to add stronger cuts (valid inequalities not implied
by LP relaxation)

Two options for using integrality to add stronger cuts

Generate cuts directly in the main problem

Generate cuts in the subproblems
30 / 52

Cut Based Methods

Main problem cuts

Idea

Derive valid inequalities for the mixed-integer set:

{(x , θ) : Ax ≥ b,

eθs ≥ ds,t + Bs,tx , s = 1, . . . ,S ,

x ∈ Rn1
+ × Zp1

+ , θ ∈ RS}

where the constraints in second row are some Benders cuts

E.g., split cuts, mixed-integer rounding, Gomory mixed-integer
cuts,. . . ,

Ideally, would have all Benders cuts defining {(x , θ) : θs ≥ Qs(x)} but
in general too many to enumerate

31 / 52

Cut Based Methods

Main problem cuts: Help the MIP solver help you

Main Problem Cuts

Derive valid inequalities for the mixed-integer set:

{(x , θ) : Ax ≥ b,

eθs ≥ ds,t + Bs,tx , s = 1, . . . ,S ,

x ∈ Rn1
+ × Zp1

+ , θ ∈ RS}

where the constraints in second row are some Benders cuts

MIP solvers will (try to) do this for you if Benders cuts are given to
the solver as part of the formulation!

Facility location example: Gurobi improves root node relaxation from
286.5 to 326.8 (compared to 352 opt)

Many MIP solvers do not derive cuts based on cuts you add in a callback

32 / 52

Cut Based Methods

Main problem cuts: Help the MIP solver help you

Main Problem Cuts

Derive valid inequalities for the mixed-integer set:

{(x , θ) : Ax ≥ b,

eθs ≥ ds,t + Bs,tx , s = 1, . . . ,S ,

x ∈ Rn1
+ × Zp1

+ , θ ∈ RS}

where the constraints in second row are some Benders cuts

Takeaway

Phase 0 (solve LP relaxation with Benders, include cuts in formulation)
can be very important for effective branch-and-cut implementation

Don’t just add cuts in a callback

32 / 52

Cut Based Methods

Cuts in the subproblems: Help yourself!

Key Idea

Use valid inequalities to obtain stronger LP relaxation of each scenario
mixed-integer set:

Xs := {(x , y) : Ax ≥ b, Tsx + Wsy = hs

x ∈ Rn1
+ × Zp1

+ , y ∈ Rn2
+ × Zp2

+ }

NB: So far, we have only seen a convergent algorithm for the case y
is continuous

But subproblem approach for generating cuts is valid and useful for y
mixed-integer

See: [Sen and Higle, 2005, Sen and Sherali, 2006, Gade et al., 2014,
Zhang and Küçükyavuz, 2014, Ntaimo, 2013]

Cuts generated for a single scenario ⇒ Can still apply Benders
decomposition

33 / 52

Cut Based Methods

Cuts in subproblem

(MP)LPt : min
θ,x

cT x +
S∑

s=1

psθs

s.t. Ax ≥ b, x ∈ Rn1
+ × Rp1

+

eθs ≥ ds,t + Bs,tx , ∀s,
θ ∈ RS

(SP)s : Qs(x̂) := min
ys

qTs ys

s.t. Wsys ≥ hs − Ts x̂

y ∈ Rn2
+ × Rp2

+

Add cuts to (SP)s , even if it’s originally an LP
(p2 = 0)

Main

Subproblems

B
en

d
er

s
C

u
ts

(θ̂
s ,x̂

)

Separate cuts

C
u

ts

(x̂
,ŷ

s)

34 / 52

Cut Based Methods

Cuts in subproblem

(MP)LPt : min
θ,x

cT x +
S∑

s=1

psθs

s.t. Ax ≥ b, x ∈ Rn1
+ × Rp1

+

eθs ≥ ds,t + Bs,tx , ∀s,
θ ∈ RS

(SP)s : Qs(x̂) := min
ys

qTs ys

s.t. Wsys ≥ hs − Ts x̂

Csys ≥ gs − Ds x̂

y ∈ Rn2
+ × Rp2

+

Add cuts to (SP)s , even if it’s originally an LP
(p2 = 0)

Main

Subproblems

B
en

d
er

s
C

u
ts

(θ̂
s ,x̂

)

Separate cuts
C

u
ts

(x̂
,ŷ

s)

34 / 52

Cut Based Methods

Cuts in the subproblems: Help yourself!

Question

How to generate valid inequalities for each scenario mixed-integer set?

Xs := {(x , y) : Ax ≥ b, Tsx + Wsy = hs

x ∈ Rn1
+ × Zp1

+ , y ∈ Rn2
+ × Zp2

+ }

Generating such cuts might require expertise in general integer
programming cuts

Split cuts, Gomory mixed-integer cuts, Chvátal-Gomory cuts,...

But it also might not...

Use problem-specific cuts, or a better formulation

E.g., facility location problem

35 / 52

Cut Based Methods

Facility location: Subproblem cuts

Feasible region for a scenario s:

{(x , y , z) :
∑
i∈G

yij + zj ≥ dsj , j ∈ J∑
j∈J

yij ≤ Cisxi , i ∈ G

yij ≥ 0, zj ≥ 0, i ∈ G , j ∈ J

xi ∈ {0, 1}, i ∈ G }

Recall: Valid inequalities

yij ≤ min{dsj ,Csi}xi , i ∈ G , j ∈ J

Two options for using them (because there is a “small” number of them)

Directly add them to the scenario subproblem formulations X

Add them as cuts when solving scenario subproblems
36 / 52

Cut Based Methods

Branch-and-cut again

Initialization phase: Solve new LP relaxation via Benders

Iteration 1: Main linear problem (no θ variable yet)

min 120x1 + 100x2 + 90x3

s.t. 0 ≤ xi ≤ 1, i = 1, 2, 3

Optimal solution: x̂ = (0, 0, 0)
Optimal value (lower bound on SMIP): 0

37 / 52

Cut Based Methods

Example: Iteration 1

Subproblems with x̂ = (0, 0, 0):

min
∑3

i=1

∑4
j=1 cijyij +

∑4
j=1 30zj

s.t.
∑4

i=1 yij + zj = d1j , ∀j∑4
j=1 yij ≤ 26 · 0∑4
j=1 yij ≤ 25 · 0∑4
j=1 yij ≤ 18 · 0

y11 ≤ 12 · 0
. . .
y34 ≤ 11 · 0
yij ≥ 0, zj ≥ 0

min
∑3

i=1

∑4
j=1 cijyij +

∑4
j=1 30zj

s.t.
∑4

i=1 yij + zj = d2j , ∀j∑4
j=1 yij ≤ 26 · 0∑4
j=1 yij ≤ 25 · 0∑4
j=1 yij ≤ 18 · 0

y11 ≤ 8 · 0
. . .
y34 ≤ 6 · 0
yij ≥ 0, zj ≥ 0

Valid inequalities in Benders subproblem ⇒ Better cuts in main problem. . .

38 / 52

Cut Based Methods

Example after root LP solved

Final main problem LP relaxation

min 120x1 + 100x2 + 90x3 + 1/2(θ1 + θ2)
s.t. θ1 ≥ 1140− 923x1 − 922x2 − 864x3

. . .
θ2 ≥ 990− 794x1 − 812x2 − 758x3
. . .
0 ≤ xi ≤ 1, i = 1, 2, 3

Optimal solution: x̂ = (0.56, 0.93, 0), θ̂ = (190.3, 152.4)
Recall: Original LP relaxation bound = 286.5

Bound using this formulation: 332.4 (recall opt = 352)

After Gurobi cuts on this: 350.5

39 / 52

Cut Based Methods

Recap: SMIP with continuous recourse

Two general approaches:

1 Direct Benders: Sequence of MIPs

2 Branch-and-cut adding Benders cuts (and others) in tree

Which is better?

1. Sequence of MIPs

Easy to implement

Tends to solve fewer scenario
subproblems

Main MIP problems may become
bottleneck

Takes full advantage of MIP solver

2. Branch-and-cut

More difficult to implement

Single tree eliminates
redundant work

Allows exploiting
subproblem cuts, e.g.,
based on problem structure

My advice: Try simpler option first!

40 / 52

Cut Based Methods Mixed-integer recourse

Mixed-integer recourse

What goes wrong with Benders approach with mixed-integer recourse?

Stochastic MIP

min c>x +
S∑

s=1

psθs

s.t. Ax ≥ b

θs ≥ Qs(x), s = 1, . . . ,S

x ∈ Rn1
+ × Zp1

+

Where for s = 1, . . . ,S

Qs(x) = min q>s y

s.t. Wsy = hs − Tsx

y ∈ Rn2
+ × Zp2

+

Qs(x): Value function of a mixed-integer program

Benders cuts (including strengthened with subproblem cuts) still valid

But main problem constraints θs ≥ Qs(x) cannot be enforced with
Benders cuts alone!

41 / 52

Cut Based Methods Mixed-integer recourse

Special methods for many cases

Key ingredient in each case

Use cuts/branching to enforce constraint θs ≥ Qs(x) for x feasible to
first-stage problem

All can be improved using main problem cuts and subproblem cuts

Pure binary first stage:

Integer L-shaped cuts: [Laporte and Louveaux, 1993]

Split cuts, transfer from one scenario to another:
[Sen and Higle, 2005]

Gomory cuts: [Gade et al., 2014]

Fenchel cuts: [Ntaimo, 2013]

Coordination branching: [Alonso-Ayuso et al., 2003]

Lagrangian cuts: [Zou et al., 2019]

Pure integer first and second-stage:

Gomory cuts [Zhang and Küçükyavuz, 2014]
42 / 52

Cut Based Methods Mixed-integer recourse

Other cases (cont’d)

Mixed binary in first and second-stage:

Lift-and-project (split) cuts: [Carøe, 1998, Tanner and Ntaimo, 2008]

Reformulation linearization technique: [Sherali and Zhu, 2007]

Disjunctive cuts from branch-and-cut tree: [Sen and Sherali, 2006]

Pure integer second-stage:

Reformulation, integer subproblems, specialized branching:
[Ahmed et al., 2004]

General mixed-integer both stages:

Scaled cuts (Benders main problem cuts included in scenario
subproblems): [van der Laan and Romeijnders, 2020]

43 / 52

Implementation Variants/Tips

Multi-cut vs. Single-cut Benders

Benders algorithm described: Multi-cut

Objective function approximation:
∑

s∈S psθs
Benders cuts generated added for each θs separately

θs ≥ π̄>s hs − π̄>s Tsx

Alternative: Single-cut

Objective function approximation: Θ
Benders cuts obtained by aggregating Benders cuts across all
scenarios

Θ ≥
∑
s∈S

ps(π̄>s hs − π̄>s Tsx)

Comparison

Multi-cut tends to converge in fewer iterations
Single-cut keeps size of main problem small
Single-cut may be faster if solving scenario subproblems is fast and
main problem is large

Hybrids are also possible by working with a partition of scenarios 44 / 52

Implementation Variants/Tips

Solving the “Phase 1” LP relaxation problem

What to do if convergence of Phase 1 is slow?

Phase 1: Add Benders cuts until LP relaxation is solved

Use the level algorithm or a regularized algorithm (keeps iterates from
moving “too far” in consecutive iterations)

Can be particularly helpful if using single-cut Benders algorithm

Use an alternative cut-generating problem

Better choice of cuts to add can lead to faster convergence

Example: [Fischetti et al., 2010]

Especially useful for problems requiring feasibility cuts

Restricted to multi-cut version

45 / 52

Recent work

Accelerated generation of Lagrangian cuts

Lagrangian cuts: valid for convex hull of single-scenario projected problem

E s = {(x , θs) ∈ X × R : Ax ≥ b, θs ≥ Qs(x)}

Definition:

Q∗s (π, π0) = min
x

{
π>x + π0Qs(x) : Ax ≥ b, x ∈ X

}
= min

x ,y

{
π>x + π0(qs)>y : (x , y) ∈ K s

}
Valid inequality for conv(E s) for any π ∈ Rn1 , π0 ∈ R:

π>x + π0θs ≥ Q∗s (π, π0)

Given relaxation solution (x̂ , θ̂s), a Lagrangian cut is found by solving

max
π,π0
{Q∗s (π, π0)− π>x̂ − π>0 θ̂s : (π, π0) ∈ Π∗s}

where Π∗s is a suitably normalized set of possible cut coefficients
46 / 52

Recent work

Lagrangian cuts (cont’d)

How to solve the cut separation problem?

max
π,π0
{Q∗s (π, π0)− π>x̂ − π>0 θ̂s : (π, π0) ∈ Π∗s}

Cutting plane algorithm!

Replace Q∗s (π, π0) with piecewise-linear concave over-estimation:

Q̂∗s (π, π0) = min{π>x̄ + π0Qs(x̄) : x̄ ∈ K̄ s}

Solve relaxed cut gen problem → (π̂, π̂0) + Upper bound on max cut
violation

Solve subproblem to evaluate Q∗s (π̂, π̂0):

min
x ,y

{
π̂>x + π̂0(qs)>y : (x , y) ∈ K s

}
Add optimal solution x̂ to K̄ s to update Q̂∗s
Repeat until an “approximately most violated” cut is found

47 / 52

Recent work

Lagrangian cuts (cont’d)

Cutting plane algorithm challenge

Convergence can be slow (solve many IP subproblems to generate a
single cut)

Idea: Heavily restrict cut coefficient space

[Chen and Luedtke, 2022a]: require π to be a linear combination of a
small number of previously generated Benders cut coefficients

Low-dimensional space ⇒ Significantly faster convergence
(empirically)

With good choice of restriction, loss in cut quality not too drastic

48 / 52

Recent work

Sparse multi-term disjunctive cuts

Binary special case:

E s = {(x , θs) ∈ {0, 1}n1 × R : Ax ≥ b, θs ≥ Qs(x)}

For I ⊆ {1, . . . , n1}, consider multi-term following relaxation:

E s ⊆
⋃

χ⊆{0,1}I
{(x , θs) ∈ [0, 1]n1 × R : Ax ≥ b, θs ≥ Qs(x), xI = χ}

Union of 2|I | polyhedra

[Balas, 1979]: Valid inequalities for union of polyhedra

Multi-term disjunctions can yield stronger cuts than standard (e.g.,
split) approaches

Complexity of cut generation grows significantly with |I |: in practice
usually |I | = 2

[Perregaard and Balas, 2001]: Extend computationally but still |I | ≤ 4

49 / 52

Recent work

Sparse cuts

“Definition”:

A cut θ ≥ α>x + β is sparse if the number of nonzeros in the
coefficient vector α is small

Advantages of sparse cuts

Impoves speed of re-solving of linear programs after adding cuts

[Dey et al., 2018]: Provide conditions when sparse cuts approximate
relaxation obtainable by dense cuts

Can we generate sparse multi-term disjunctive cuts efficiently?

50 / 52

Recent work

Sparse mulit-term disjunctive cuts

Summary of results from [Chen and Luedtke, 2022b]

Goal: generate valid inequalities for multi-term disjunction defined by
I

Idea

Restrict support of the generated inequalities to variables in I ⇒ Sparse

Key result:

Generating such a valid inequality can be accomplished by solving 2|I |

linear programs once, then solving a “cut generating linear program”
with 2|I | constraints

Makes it feasible to scale to |I | ≈ 10− 12

Promising numerical results for problems with “natural sparsity”

51 / 52

Recent work

Parting thoughts

Branch-and-Benders cuts

SMIP is an important application

But many large-scale structured MIP problems have similar structure

Work to do

SMIP still not “routine”, even in simplest case of continuous recourse

Lack of available software that integrates state-of-the-art methods

Questions?

jim.luedtke@wisc.edu

52 / 52

jim.luedtke@wisc.edu

Recent work

Ahmed, S. and Shapiro, A. (2002).
The sample average approximation method for stochastic programs
with integer recourse.
Preprint available at www.optimization-online.org.

Ahmed, S., Tawarmalani, M., and Sahinidis, N. (2004).
A finite branch-and-bound algorithm for two-stage stochastic integer
programs.
Mathematical Programming, 100(2):355–377.

Alonso-Ayuso, A., Escudero, L. F., and no, M. T. O. (2003).
Bfc, a branch-and-fix coordination algorithmic framework for solving
some types of stochastic pure and mixed 0–1 programs.
European Journal of Operational Research, 151(3):503 – 519.

Balas, E. (1979).
Disjunctive programming.
In Annals of Discrete Mathematics, volume 5, pages 3–51. Elsevier.

Carøe, C. C. (1998).
52 / 52

Recent work

Decomposition in Stochastic Integer Programming.
PhD thesis, Department of Operations Research, University of
Copenhagen, Denmark.

Chen, R. and Luedtke, J. R. (2022a).
On generating lagrangian cuts for two-stage stochastic integer
programs.
INFORMS Journal on Computing.
https://arxiv.org/abs/2106.04023.

Chen, R. and Luedtke, J. R. (2022b).
Sparse multi-term disjunctive cuts for the epigraph of a function of
binary variables.
In IPCO 2022, Lecture Notes in Computer Science, Berlin.
Springer-Verlag.

Dey, S. S., Molinaro, M., and Wang, Q. (2018).
Analysis of sparse cutting planes for sparse MILPs with applications to
stochastic MILPs.
Mathematics of Operations Research, 43(1):304–332.

52 / 52

Recent work

Fischetti, M., Salvagnin, D., and Zanette, A. (2010).
A note on selection of benders’ cuts.
Mathematical Programming, 124:175–182.

Gade, D., Küçükyavuz, S., and Sen, S. (2014).
Decomposition algorithms with parametric Gomory cuts for two-stage
stochastic integer programs.
Mathematical Programming, 144(1-2):39–64.

Kleywegt, A. J., Shapiro, A., and Homem-de Mello, T. (2002).
The sample average approximation method for stochastic discrete
optimization.
SIAM Journal on Optimization, 12(2):479–502.

Laporte, G. and Louveaux, F. (1993).
The integer L-shaped method for stochastic integer programs with
complete recourse.
Operations Research Letters, 13(3):133–142.

Mak, W.-K., Morton, D., and Wood, R. (1999).
52 / 52

Recent work

Monte Carlo bounding techniques for determining solution quality in
stochastic programs.
Operations Research Letters, 24:47–56.

Ntaimo, L. (2013).
Fenchel decomposition for stochastic mixed-integer programming.
Journal of Global Optimization, 55:141–163.

Perregaard, M. and Balas, E. (2001).
Generating cuts from multiple-term disjunctions.
In International Conference on Integer Programming and
Combinatorial Optimization, pages 348–360. Springer.

Sen, S. and Higle, J. L. (2005).
The C 3 theorem and a D2 algorithm for large scale stochastic
mixed-integer programming: set convexification.
Mathematical Programming, 104:1–20.

Sen, S. and Sherali, H. (2006).

52 / 52

Recent work

Decomposition with branch-and-cut approaches for two-stage
stochastic mixed-integer programming.
Mathematical Programming, 106:203–223.

Shapiro, A. and Homem-de-Mello, T. (2000).
On the rate of convergence of optimal solutions of Monte Carlo
approximations of stochastic programs.
SIAM Journal on Optimization, 11:70–86.

Sherali, H. and Zhu, X. (2007).
On solving discrete two-stage stochastic programs having
mixed-integer first- and second-stage variables.
Mathematical Programming, 108:597–616.

Tanner, M. and Ntaimo, L. (2008).
Computations with disjunctive cuts for two-stage stochastic mixed 0-1
integer programs.
Journal of Global Optimization, 58:365–384.

van der Laan, N. and Romeijnders, W. (2020).

52 / 52

Recent work

A converging benders’ decomposition algorithm for two-stage
mixed-integer recourse models.

Zhang, M. and Küçükyavuz, S. (2014).
Finitely convergent decomposition algorithms for two-stage stochastic
pure integer programs.
SIAM Journal on Optimization, 24:1933–1951.

Zou, J., Ahmed, S., and Sun, X. A. (2019).
Stochastic dual dynamic integer programming.
Mathematical Programming, 175:461–502.

52 / 52

	Introduction/Examples
	Sample average approximation
	Solving Finite Scenario SMIP
	Integer Programming Methodology
	Branch-and-bound
	Valid inequalities/improved formulations

	Cut Based Methods
	Mixed-integer recourse

	Implementation Variants/Tips
	Recent work

